I'm training a CNN on kaggle and my data consists of two things: 1 csv file of labels and 1 folder of images. How can I split the data on kaggle into train test split? Thanks.
Here is one example image:
and the associated label(from the csv):
The function below creates train, test, and validation generators are given:
source dir - full path to the directory containing all the images
cvs_path - path to CSV file that has a column (x_col
) containing a string of the filename and a column (y_col
) that contains the string of the class associated filename
note: source_dir/filename results in a path to the file in the source_dir
This function automatically determines the batch_size for the generator and steps to us in model.fit
so that you go through the train, test, or validation images exactly once per epoch. max_batch_size
specifies the largest batch size you allow based on memory constraints train_split - float between 0 and 1 specifying the percentage of images used for training test_split - float between 0 and 1 specifying the percentage of images used for training note the validation_split is calculated internally as 1 - train_split - test_split
target_size= tuple(height, width) input images are adjust to
scale - float- pixels are rescaled to pixels* scale ( typically 1/255)
class_mode - see keras flow_from_dataframe for details typically use 'categorical'
import os
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
def train_test_valid_split(source_dir, cvs_path,max_batch_size, train_split, test_split, x_col, y_col, class_mode, target_size, scale):
data=pd.read_csv(cvs_path).copy()
te_split=test_split/(1-train_split)
train_df=data.sample(n=None, frac=train_split, replace=False, weights=None, random_state=123, axis=0)
tr_batch_size= max_batch_size
tr_steps=int(len(train_df.index)//tr_batch_size)
dummy_df=data.drop(train_df.index, axis=0, inplace=False)
test_df=dummy_df.sample(n=None, frac=te_split, replace=False, weights=None, random_state=123, axis=0)
te_batch_size, te_steps=get_bs(len(test_df.index),max_batch_size )
valid_df=dummy_df.drop(test_df.index, axis=0)
v_batch_size,v_steps=get_bs(len(valid_df.index), max_batch_size)
gen=ImageDataGenerator(rescale=scale)
train_gen=gen.flow_from_dataframe(dataframe=train_df, directory=source_dir,batch_size=tr_batch_size, x_col=x_col, y_col=y_col,
target_size=target_size, class_mode=class_mode,seed=123, validate_filenames=False)
test_gen=gen.flow_from_dataframe(dataframe=test_df, directory=source_dir, batch_size=te_batch_size, x_col=x_col, y_col=y_col,
target_size=target_size, class_mode=class_mode, shuffle=False,validate_filenames=False)
valid_gen=gen.flow_from_dataframe(dataframe=valid_df, directory=source_dir,batch_size=v_batch_size, x_col=x_col, y_col=y_col,
target_size=target_size, class_mode=class_mode, shuffle=False,validate_filenames=False)
return train_gen, tr_steps, test_gen, te_steps, valid_gen , v_steps
def get_bs(length, b_max):
batch_size=sorted([int(length/n) for n in range(1,length+1) if length % n ==0 and length/n<=b_max],reverse=True)[0]
steps=int(length//batch_size)
return batch_size, steps
the CSV file is of the form
file_id class_id
0 00000.jpg AFRICAN CROWNED CRANE
1 00001.jpg AFRICAN CROWNED CRANE
2 00002.jpg AFRICAN CROWNED CRANE
3 00003.jpg AFRICAN CROWNED CRANE
4 00004.jpg AFRICAN CROWNED CRANE
5 00005.jpg AFRICAN CROWNED CRANE
6 00006.jpg AFRICAN CROWNED CRANE
7 00007..jpg AFRICAN CROWNED CRANE
8 00008..jpg AFRICAN CROWNED CRANE
Below is an example of the use
source_dir=r'c:\temp\birds\consolidated_images'
cvs_path=r'c:\temp\birds\birds.csv'
train_split=.8
test_split=.1
x_col='file_id'
y_col='class_id'
target_size=(224,224)
scale=1/127.5-1
max_batch_size=32
class_mode='categorical'
train_gen, train_steps, test_gen, test_steps, valid_gen, valid_steps=train_test_valid_split(source_dir,
cvs_path, max_batch_size, train_split, test_split, x_col, y_col, class_mode, target_size, scale)
print ('train steps: ', train_steps, ' test steps: ', test_steps, ' valid steps: ', valid_steps)
results from execution are
Found 30172 non-validated image filenames belonging to 250 classes.
Found 3772 non-validated image filenames belonging to 250 classes.
Found 3771 non-validated image filenames belonging to 250 classes.
train steps: 942 test steps: 164 valid steps: 419
now use these generators
epochs= 20 # set to what you want
history=model.fit(x=train_gen, epochs=epochs,steps_per_epoch=train_steps,
validation_data=valid_gen, validation_steps=valid_steps,
shuffle=False, verbose=1)
after training
accuracy=model.evaluate(test_gen, steps=test_steps)[1]*100
print ('Model accuracy on test set is', accuracy)
or to do predictions
predictions=model.predict(test_gen, steps=test_steps, verbose=1)