I have a binary classification problem. My dataset consists of columns of different types: binary (0 or 1) or textual (text from emails). I have more than 40 columns.
An example may be the following:
Text is_it_capital? is_it_upper? contains_num? Label
an example of text 0 0 0 0
ANOTHER example of text 1 1 0 1
What's happening?Let's talk at 5 1 0 1 1
I am trying to use pipeline in order to make the prediction.
However, the fact I have already encoded some columns (is_it_capital?, ....) is not helping me a lot, as I do not know how to add these columns (features) in my pipeline. All of them are numerical and they take values either 1 or 0 (checked using numerical_columns = train_set.select_dtypes(include=[np.number])
).
If I had not already encoded that columns, probably FeatureUnion would have been a good solution; in this case, I have no idea on how to proceed.
I have tried as follows
nb_pipeline = Pipeline([
('NBCV',extract_func. tf_idf_n),
('nb_clf',MultinomialNB())])
nb_pipeline.fit(train_set,train_set['Label']) # I am considering the whole training set
predicted_nb = nb_pipeline.predict(test_set)
np.mean(predicted_nb == test_set['Label'])
but I got the error
ValueError: Found input variables with inconsistent numbers of samples: [30, 4394]
I am splitting the dataset into train (80%) and test (20%) using train_test_split
. y
is only Label
, while X
contains all the other columns in my example. After splitting the dataset, I concatenate X_train
and y_train
as follows:
train_set= pd.concat([X_train, y_train], axis=1)
test_set = pd.concat([X_test, y_test], axis=1)
FULL TRACK OF ERROR:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-50-bab0cc0a9f07> in <module>
6 ('nb_clf',MultinomialNB())])
7
----> 8 nb_pipeline.fit(train_set.drop('Label', axis=1), train_set['Label'])
9 predicted_nb = nb_pipeline.predict(test_set.drop('Label', axis=1))
10 np.mean(predicted_nb == test_set['Label'])
/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
333 if self._final_estimator != 'passthrough':
334 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
--> 335 self._final_estimator.fit(Xt, y, **fit_params_last_step)
336
337 return self
/anaconda3/lib/python3.7/site-packages/sklearn/naive_bayes.py in fit(self, X, y, sample_weight)
613 self : object
614 """
--> 615 X, y = self._check_X_y(X, y)
616 _, n_features = X.shape
617 self.n_features_ = n_features
/anaconda3/lib/python3.7/site-packages/sklearn/naive_bayes.py in _check_X_y(self, X, y)
478
479 def _check_X_y(self, X, y):
--> 480 return self._validate_data(X, y, accept_sparse='csr')
481
482 def _update_class_log_prior(self, class_prior=None):
/anaconda3/lib/python3.7/site-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
430 y = check_array(y, **check_y_params)
431 else:
--> 432 X, y = check_X_y(X, y, **check_params)
433 out = X, y
434
/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
70 FutureWarning)
71 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 72 return f(**kwargs)
73 return inner_f
74
/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
810 y = y.astype(np.float64)
811
--> 812 check_consistent_length(X, y)
813
814 return X, y
/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_consistent_length(*arrays)
254 if len(uniques) > 1:
255 raise ValueError("Found input variables with inconsistent numbers of"
--> 256 " samples: %r" % [int(l) for l in lengths])
257
258
ValueError: Found input variables with inconsistent numbers of samples: [29, 4394]
From the traceback, you can see that the tfidf transformer completes, and the NB model is what breaks. I suspect the tfidf is not doing what you expect it to, because it is treating the entire frame as an iterable of columns to be encoded; so it thinks there are only 29 "documents", and so the NB sees 29 training rows with 4394 labels.
I believe something like the following should work the way you want it to.
ct = ColumnTransformer(
transformers=[('tfidf', extract_func.tf_idf_n, 'Text')],
remainder='passthrough',
)
nb_pipeline = Pipeline([
('preproc', ct),
('nb_clf', MultinomialNB())
])
nb_pipeline.fit(train_set.drop('Label', axis=1), train_set['Label'])