I have several files containing 3D positions of 10 points (as plotting in corresponding pictures). I would like to use multi-dimensional scaling to find similar orderings and print out different orderings. For example, here ordering from text file 1, 2 and 4 are completely the same, but different from 3.
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA
A1=[[0.000, 0.000, 0.5],
[0.250, 0.000, 0.5],
[0.125, 0.250, 0.5],
[0.375, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.125, 0.750, 0.5],
[0.375, 0.750, 0.5],
[0.000, 1.000, 0.5],
[0.250, 1.000, 0.5]]
A2=[[0.500, 0.000, 0.5],
[0.750, 0.000, 0.5],
[0.375, 0.250, 0.5],
[0.625, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.500, 1.000, 0.5],
[0.750, 1.000, 0.5]]
A3=[[0.500, 0.000, 0.5],
[0.750, 0.000, 0.5],
[0.625, 0.250, 0.5],
[0.875, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.500, 1.000, 0.5],
[0.750, 1.000, 0.5]]
A4=[[0.250, 0.000, 0.5],
[0.500, 0.000, 0.5],
[0.375, 0.250, 0.5],
[0.625, 0.250, 0.5],
[0.500, 0.500, 0.5],
[0.750, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.250, 1.000, 0.5],
[0.500, 1.000, 0.5]]
print(len(A1), len(A2), len(A3), len(A4))
a1=euclidean_distances(A1)
a2=euclidean_distances(A2)
a3=euclidean_distances(A3)
a4=euclidean_distances(A4)
print(a1)
OUTPUT
Number of different orders: 2
A1
A3
Set up the data and libraries:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA
A1=[[0.000, 0.000, 0.5],
[0.250, 0.000, 0.5],
[0.125, 0.250, 0.5],
[0.375, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.125, 0.750, 0.5],
[0.375, 0.750, 0.5],
[0.000, 1.000, 0.5],
[0.250, 1.000, 0.5]]
A2=[[0.500, 0.000, 0.5],
[0.750, 0.000, 0.5],
[0.375, 0.250, 0.5],
[0.625, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.500, 1.000, 0.5],
[0.750, 1.000, 0.5]]
A3=[[0.500, 0.000, 0.5],
[0.750, 0.000, 0.5],
[0.625, 0.250, 0.5],
[0.875, 0.250, 0.5],
[0.250, 0.500, 0.5],
[0.500, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.500, 1.000, 0.5],
[0.750, 1.000, 0.5]]
A4=[[0.250, 0.000, 0.5],
[0.500, 0.000, 0.5],
[0.375, 0.250, 0.5],
[0.625, 0.250, 0.5],
[0.500, 0.500, 0.5],
[0.750, 0.500, 0.5],
[0.375, 0.750, 0.5],
[0.625, 0.750, 0.5],
[0.250, 1.000, 0.5],
[0.500, 1.000, 0.5]]
Let's place the data in a handy way and calculate distances.
""""""
# Number of different elemnts
segments_dic = {'A1': A1,
'A2': A2,
'A3': A3,
'A4': A4,}
# To clasify the elements
segments_distances = []
for i in segments_dic.keys():
segments_distances.append(round(euclidean_distances(segments_dic[i]).sum(),3))
Let's now check which are the closer groups of points:
"""Number of different elements / orders
I will round the results to make them comparable"""
different_elements = np.unique(segments_distances)
print("number of different orders: ",np.unique(segments_distances).__len__())
print("different orders: ", different_elements)
np.unique(segments_distances).__len__()
for i in different_elements:
print("For element distance ",i," corresponding groups are: ")
for j in segments_dic.keys():
if i == round(euclidean_distances(segments_dic[j]).sum(),3):
print(j)
This is how the outputs looks like:
number of different orders: 2
different orders: [46.952 48.496]
For element distance 46.952 corresponding groups are:
A1
A2
A4
For element distance 48.496 corresponding groups are:
A3
Let see if we can validate this results with pics.
The plots in 2D:
"""Plots"""
for i in segments_dic.keys():
# Rotate the data
clf = PCA(n_components=2)
X = clf.fit_transform(segments_dic[i])
aux = pd.DataFrame(X)
fig = plt.figure()
plt.scatter(aux.iloc[:,0],aux.iloc[:,1])
plt.title('{}'.format(i))
fig.savefig('{}_representation.svg'.format(i))
Upload the pics:
The results are validated on the pics.