I have a dataset in textfile format I am trying to create a dataframe using case class but I am getting the below mentioned error:-
Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: The number of columns doesn't match. Old column names (1): value New column names (4): Name, Age, Department, Salary
This is the first three lines of my dataset:-
Name,Age,Department,Salary
Sohom,30,TD,9000000
Aminul,32,AC,10000000
The code I am using is below:-
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.sql.SparkSession
case class Record(Name: String, Age :Int, Department: String, Salary: Int)
object airportDetails {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("Spark SQL val basic example").config("spark.master", "local").getOrCreate()
spark.sparkContext.setLogLevel("OFF")
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
import spark.implicits._
val input = spark.sparkContext.textFile("file:///C:/Users/USER/Desktop/SparkDocuments/airport_dataset.txt")
.map(line => line.split(",").map(x => Record(x(0).toString,x(1).toInt,x(2).toString,x(3).toInt)))
val input1 = input.toDF("Name", "Age", "Department", "Salary")
input1.show()
}
}
You can just use the Spark dataframe CSV reader and cast it to a dataset with Record type:
case class Record(Name: String, Age: Int, Department: String, Salary: Int)
val ds = spark.read.option("header",true)
.option("inferschema",true)
.csv("file:///C:/Users/USER/Desktop/SparkDocuments/airport_dataset.txt")
.as[Record]
If you want a dataframe instead, you can use toDF
:
val df = ds.toDF("Name", "Age", "Department", "Salary")