I'm examining this code as preparation for my test and I'm having some problems figuring out what is the correct time complexity:
a = 1;
while (a < n) {
b = 1;
while (b < a^2)
b++;
a = a*2;
}
The values for a
are as follows : 1, 2, 4, 8, ... , 2^(logn) = n
Therefore we have logn
iterations for the outer loop.
In every nested loop, there are a^2
iterations, so basically what I've come up with is:
T(n) = 1 + 4 + 16 + 64 + ... + (2^logn)^2
I'm having problems finding the general term of this series and therefore getting to a final result. (maybe due to being completely off in my calculations though)
Would appreciate any help, thank you.
Your calculations are alright, you are correct with your analysis of the inner while-loop. We can demonstrate this with a small table:
This is basically the sum of a geometric progression with:
a1 = 1, q = 4, #n = lg n + 1
Where #n
is the number of elements.
We have: Sn = 1 * (4^(lgn +1) - 1)/(4-3) = (4*n^2 - 1)/3
Thus we can say your code running complexity is Θ(n^2)
Mathematical explanation in LaTeX: