creating a dataset from multiple hdf5 groups
Code for groups with
np.array(hdf.get('all my groups'))
I have then added code for creating a dataset from groups.
with h5py.File('/train.h5', 'w') as hdf:
hdf.create_dataset('train', data=one_T+two_T+three_T+four_T+five_T)
The error message being
ValueError: operands could not be broadcast together with shapes(534456,4) (534456,14)
The numbers in each group are the same other than the varying column lengths. 5 separate groups to one dataset.
This answer addresses the OP's request in comments to my first answer ("an example would be ds_1 all columns, ds_2 first two columns, ds_3 column 4 and 6, ds_4 all columns"). The process is very similar, but the input is "slightly more complicated" than the first answer. As a result I used a different approach to define dataset names and colums to be copied. Differences:
ds_list
) and 2) associated columns to copy from each dataset (col_list
is a of lists). The size of the new dataset is calculated by summing the number of columns in col_list
. I used "fancy indexing" to extract the columns using col_list
.Code below:
# Data for file1
arr1 = np.random.random(120).reshape(20,6)
arr2 = np.random.random(120).reshape(20,6)
arr3 = np.random.random(120).reshape(20,6)
arr4 = np.random.random(120).reshape(20,6)
# Create file1 with 4 datasets
with h5py.File('file1.h5','w') as h5f :
h5f.create_dataset('ds_1',data=arr1)
h5f.create_dataset('ds_2',data=arr2)
h5f.create_dataset('ds_3',data=arr3)
h5f.create_dataset('ds_4',data=arr4)
# Open file1 for reading and file2 for writing
with h5py.File('file1.h5','r') as h5f1 , \
h5py.File('file2.h5','w') as h5f2 :
# Loop over datasets in file1 to get dtype and rows (should test compatibility)
for i, ds in enumerate(h5f1.keys()) :
if i == 0:
ds_0_dtype = h5f1[ds].dtype
n_rows = h5f1[ds].shape[0]
break
# Create new empty dataset with appropriate dtype and size
# Use maxshape parameter to make resizable in the future
ds_list = ['ds_1','ds_2','ds_3','ds_4']
col_list =[ [0,1,2,3,4,5], [0,1], [3,5], [0,1,2,3,4,5] ]
n_cols = sum( [ len(c) for c in col_list])
h5f2.create_dataset('combined', dtype=ds_0_dtype, shape=(n_rows,n_cols), maxshape=(n_rows,None))
# Loop over datasets in file1, read data into xfer_arr, and write to file2
first = 0
for ds, cols in zip(ds_list, col_list) :
xfer_arr = h5f1[ds][:,cols]
last = first + xfer_arr.shape[1]
h5f2['combined'][:, first:last] = xfer_arr[:]
first = last