I would like to create a multi-dimensional gaussian probability density function (let's say a 2D gaussian like in the figure below) with tensorflow.
For 1D, it works like a charm:
d = tfp.distributions.Normal(loc=5.0, scale=3.0)
x = d.prob(tf.range(0,10, dtype=tf.float32))
But for higher dimension, I get InvalidArgumentError: Incompatible shapes
error using Normal
or MultivariateNormalDiag
distributions... What do I miss? How should the prob
method be used to output the probability density function on a multi dimensional tensor?
If I understood correctly, you can do something like:
mu = [0,0]
cov = [[1,0],
[0,1]]
mv_normal = np.random.multivariate_normal(mu, cov, size=1000)
mv_normal_mean = np.mean(mv_normal , axis=0)
mv_normal_cov = np.cov(mv_normal , rowvar=0)
mv_normal_diag = np.diag(mv_normal_cov)
mv_normal_stddev = np.sqrt(mv_normal_diag)
mv_normal is just like:
mv_normal
array([[-1.73476374, 0.17578855],
[ 0.11866498, -0.66417069],
[ 1.52000069, -1.3004096 ],
...,
[-1.37625595, -0.46864374],
[ 0.81659449, 0.70524036],
[ 1.12183633, 0.14196896]])
mv_normal_mean
and mv_normal_cov
etc are just arrays here. They will be used to create:
mvn = tfd.MultivariateNormalDiag(
loc=mv_normal_mean,
scale_diag=mv_normal_stddev)
Values can be seen as:
mvn_mean
array([-0.03976356, 0.07387231])
mv_normal_cov
array([[ 1.04138867, -0.00877481],
[-0.00877481, 0.97736496]])
And you can use contour plot for plotting.
x1, x2 = np.meshgrid(mv_normal[:,0], mv_normal[:,1])
data = np.stack((x1.flatten(), x2.flatten()), axis=1)
prob = mvn.prob(data).numpy()
plt.figure(figsize = (12,9))
ax = plt.axes(projection='3d')
ax.plot_surface(x1, x2, prob.reshape(x1.shape), cmap = 'Blues')
plt.show()