I am trying to make a jointplot in Seaborn. The goal is to have a scatter plot of all [x,z] values and to have these color-coded by [cat], and to have the distributions for these two categories. Then I also want a scatter and distribution plot of [x,alt_Z], ignoring the alt_Z values that are NaN.
Using Python 3.7
Here is a stand-alone dataset and my goal (made in Excel, so the distributions are not shown).
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import seaborn as sns
col1 = [1,1.5,3.1,3.4,2,-1]
col2 = [1,-3,2,8,2.5,-1.3]
col3 = [4,3,4,0.5,1,0.3]
col4 = [10,12,10,'NaN',13,'NaN']
col5 = ['A','A','A','B','A','B']
df = pd.DataFrame(list(zip(col1, col2, col3, col4, col5)),
columns =['x', 'y', 'z', 'alt_Z', 'cat'])
display(df)
The code below doesn't finish the plot and returns TypeError: The y variable is categorical, but one of ['numeric', 'datetime'] is required
. I also don't how, in the code below, to group by [cat] A & B, so it is shown as red and only the A category is plotting.
df2 = df[['x', 'y', 'z', 'alt_Z', 'cat']]\
.melt(id_vars=['x', 'y'], value_vars=['z', 'alt_Z'])
g = sns.jointplot(data=df2, x='x', y='value', hue='variable',
palette={'z': 'black', 'alt_Z': 'red'})
One problem with the dataframe, is that col4
contains integers and 'NaN'. As there don't exist NaN values for integers, pandas makes it a column of objects. Converting it to floats will create a proper float column with NaN
as numbers.
To create the scatter plot, two calls to sns.scatter()
will do:
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
col1 = [1, 1.5, 3.1, 3.4, 2, -1]
col2 = [1, -3, 2, 8, 2.5, -1.3]
col3 = [4, 3, 4, 0.5, 1, 0.3]
col4 = [10, 12, 10, 'NaN', 13, 'NaN']
col5 = ['A', 'A', 'A', 'B', 'A', 'B']
df = pd.DataFrame(list(zip(col1, col2, col3, col4, col5)),
columns=['x', 'y', 'z', 'alt_Z', 'cat'])
df['alt_Z'] = df['alt_Z'].astype(float)
ax = sns.scatterplot(data=df, x='x', y='alt_Z', color='black', label='alt_Z')
sns.scatterplot(data=df, x='x', y='z', hue='cat', ax=ax)
plt.show()
From here, we can create 2 dataframes: df1
containing x
, z
and cat
.
And df2
containing x
and alt_Z
. Renaming alt_Z
to z
and filling in a cat
column containing the string alt_Z
will make it similar to df1
.
The jointplot()
can then operate on the concatenation of both datafames:
df1 = df[['x', 'z', 'cat']]
df2 = df[['x', 'alt_Z']].rename(columns={'alt_Z': 'z'}).dropna()
df2['cat'] = 'alt_Z'
g = sns.jointplot(data=df1.append(df2), x='x', y='z', hue='cat', palette={'alt_Z': 'black', 'A': 'orange', 'B': 'green'})
g.ax_joint.set_xlim(-3, 6) # the default limits are too wide for these reduced test data
plt.show()