My question is somewhat related to this one. I have a Pandas DataFrame and I want to separately plot the autocorrelation function for value
each item in category
. Below is what I've tried, and it plots all of the autocorrelation functions on the same plot. How can I plot them separately and also control plot size?
# Import libraries
import pandas as pd
from pandas.plotting import autocorrelation_plot
# Create DataFrame
df = pd.DataFrame({
'category': ['sav','sav','sav','sav','sav','check','check','check','check','check','cd','cd','cd','cd','cd'],
'value': [1.2,1.3,1.5,1.7,1.8, 10,13,17,20,25, 7,8,8.5,9,9.3]
})
# Loop through for each item in category and plot autocorrelation function
for cat in df['category'].unique():
s = df[df['category']==cat]['value']
s = s.diff().iloc[1:] #First order difference to de-trend
ax = autocorrelation_plot(s)
One easy way is to force rendering after each iteration with plt.show()
:
# Loop through for each item in category and plot autocorrelation function
for cat in df['category'].unique():
# create new figure, play with size
plt.figure(figsize=(10,6))
s = df[df['category']==cat]['value']
s = s.diff().iloc[1:] #First order difference to de-trend
ax = autocorrelation_plot(s)
plt.show() # here
Also the syntax can be simplified with groupby
:
for cat, data in df.groupby('category')['value']:
plt.figure(figsize=(10,6))
autocorrelation_plot(data.diff().iloc[1:])
plt.title(cat)
plt.show()