Search code examples
pythonintelrealsense

How to save Intel Realsense images in list (pyrealsense2)


I'm trying to save both, the depth and color images of the Intel Realsense D435i camera in a list of 300 images. Then I will use multiprocessing to save this chunk of 300 images onto my disk. But every time I try, the program successfully appends 15 images in the list and then I get this error:

    Frame didn't arrived within 5000

I made sure I had the 64 bit version on python 3.6 installed and the camera streams perfectly well when I do not try to save the images in a list. The real-sense viewer works great too. I also tried with different resolutions and frame rates but it doesn't seem to work either. What is interesting is if I only save the color images, I will not get the same error, instead I will get the same color image over and over in the list.

if __name__ == '__main__':
pipeline = rs.pipeline()
config = rs.config()

config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
profile = pipeline.start(config)

depth_sensor = profile.get_device().first_depth_sensor()
depth_sensor.set_option(
    rs.option.visual_preset, 3
)  # Set high accuracy for depth sensor
depth_scale = depth_sensor.get_depth_scale()

align_to = rs.stream.color
align = rs.align(align_to)

#   Init variables
im_count = 0
image_chunk = []
image_chunk2 = []
# sentinel = True
try:
    while True:

        # Wait for a coherent pair of frames: depth and color
        frames = pipeline.wait_for_frames()
        aligned_frames = align.process(frames)
        aligned_depth_frame = aligned_frames.get_depth_frame()
        color_frame = aligned_frames.get_color_frame()


        if not aligned_depth_frame or not color_frame:
            print("problem here")
            raise RuntimeError("Could not acquire depth or color frames.")

        depth_image = np.asanyarray(aligned_depth_frame.get_data())
        color_image = np.asanyarray(color_frame.get_data())

        image_chunk.append(color_image)
        image_chunk2.append(depth_image)




except Exception as e:
    print(e)

finally:
    # Stop streaming
    pipeline.stop()

I simply need it to save 300 images in a row, that's all, so I am quite troubled as to what is causing this issue.


Solution

  • Holding onto the frame locks the memory, and eventually it hits a limit, which prevents acquiring more images. Even though you are creating an image, the data is still from the frame. You need to clone the image after you create it to release the link to the frame's memory.

    depth_image = np.asanyarray(aligned_depth_frame.get_data())
    color_image = np.asanyarray(color_frame.get_data())
    
    depth_image = depth_image.copy()
    color_image = color_image.copy()
    
    image_chunk.append(color_image)
    image_chunk2.append(depth_image)
    

    Read more on frames and memory management here: https://dev.intelrealsense.com/docs/frame-management

    I created a wrapper class to extract the various elements out of the frame set that can't be recreated later. It's a bit heavy, but shows some common operations that might be helpful for others:

    # import the necessary packages
    import logging
    
    import cv2 as cv2
    import numpy as np
    import pyrealsense2 as rs
    
    # create local logger to allow adjusting verbosity at the module level
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.INFO)
    
    colorizer = None
    align_to_depth = None
    align_to_color = None
    pointcloud = None
    
    
    class IntelD435ImagePacket:
        """
        Class that contains image and associated processing data.
        """
    
        @property
        def frame_id(self):
            return self._frame_id
    
        @property
        def timestamp(self):
            return self._timestamp
    
        @property
        def image_color(self):
            return self._image_color
    
        @property
        def image_depth(self):
            return self._image_depth
    
        @property
        def image_color_aligned(self):
            if self._image_color_aligned is None:
                self._image_color_aligned = self._align_color_to_depth(self.image_color, self.depth_intrinsics,
                                                                       self.color_intrinsics,
                                                                       self.color_to_depth_extrinsics)
            return self._image_color_aligned
    
        @property
        def image_depth_aligned(self):
            if self._image_depth_aligned is None:
                self._image_depth_aligned = self._align_depth_to_color(self.image_depth, self.depth_intrinsics,
                                                                       self.color_intrinsics,
                                                                       self.depth_to_color_extrinsics)
            return self._image_depth_aligned
    
        @property
        def image_depth_colorized(self, colormap=None, min_value=None, max_value=None, visual_preset=None):
            if self._image_depth_colorized is None:
                self._image_depth_colorized = self._colorize(self.image_depth, colormap, min_value, max_value, visual_preset)
            return self._image_depth_colorized
    
        @property
        def image_depth_8U(self, min_value=None, max_value=None):
            if min_value is None:
                min_value = np.amin(self.image_depth)
            if max_value is None:
                max_value = np.amax(self.image_depth)
            if (self._image_depth_8U_min != min_value) or (self._image_depth_8U_max != max_value):
                self._image_depth_8U = None
            if self._image_depth_8U is None:
                self._image_depth_8U_min = min_value
                self._image_depth_8U_max = max_value
                self._image_depth_8U = self._convert_to_GRAY_8U(self.image_depth, min_value, max_value)
            return self._image_depth_8U
    
        @property
        def depth_intrinsics(self):
            return self._depth_intrinsics
    
        @property
        def color_intrinsics(self):
            return self._color_intrinsics
    
        @property
        def depth_to_color_extrinsics(self):
            return self._depth_to_color_extrinsics
    
        @property
        def color_to_depth_extrinsics(self):
            return self._color_to_depth_extrinsics
    
        @property
        def pointcloud(self):
            if self._pointcloud is None:
                self._pointcloud = self._create_pointcloud(self.image_depth, self.depth_intrinsics).reshape(-1, 3)
            return self._pointcloud
    
        @property
        def pointcloud_texture(self):
            if self._pointcloud is None:
                self._pointcloud_texture = self._create_pointcloud_texture(self.image_color, self.color_intrinsics,
                                                                           self.color_to_depth_extrinsics).reshape(-1, 3)
            return self._pointcloud_texture
    
        @staticmethod
        def _align_color_to_depth(image_color, depth_intrinsics, color_intrinsics, color_to_depth_extrinsics):
            convert_3x3_to_4x4 = np.eye(3, 4)
            convert_4x4_to_3x3 = np.eye(4, 3)
            H = depth_intrinsics @ convert_3x3_to_4x4 @ color_to_depth_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
                color_intrinsics)
            H = H / H[2][2]
            return cv2.warpPerspective(image_color, H, (image_color.shape[1], image_color.shape[0]))
    
        @staticmethod
        def _align_depth_to_color(image_depth, depth_intrinsics, color_intrinsics, depth_to_color_extrinsics):
            convert_3x3_to_4x4 = np.eye(3, 4)
            convert_4x4_to_3x3 = np.eye(4, 3)
            H = color_intrinsics @ convert_3x3_to_4x4 @ depth_to_color_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
                depth_intrinsics)
            H = H / H[2][2]
            return cv2.warpPerspective(image_depth, H, (image_depth.shape[1], image_depth.shape[0]))
    
        def _convert_to_GRAY_8U(self, image, min_value=None, max_value=None, dynamic_range=None):
            if dynamic_range is None:
                dynamic_range = False
    
            # Perform grayscale conversion if needed
            image_gray = None
            if len(image.shape) == 3:
                image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            elif len(image.shape) == 2:
                image_gray = image
            else:
                raise ValueError('image was an unknown format.  Expected len(image.shape) = 2 or 3')
    
            # check if further processing is needed
            if dynamic_range is None and image_gray.dtype == np.uint8:
                return image_gray
    
            # Determine range of normalization
            if min_value is None or max_value is None:
                if dynamic_range:
                    # assume full range based on min/max picel values
                    if min_value is None:
                        min_value = np.amin(self.image_depth)
                    if max_value is None:
                        max_value = np.amax(self.image_depth)
                else:
                    # assume full range based on data type
                    if np.issubdtype(image_gray.dtype, np.integer) or np.issubdtype(image_gray.dtype, np.signedinteger):
                        # int range is full range of value type
                        dtype_info = np.iinfo(image_gray.dtype)
                        if min_value is None:
                            min_value = dtype_info.min
                        if max_value is None:
                            max_value = dtype_info.max
                    else:
                        # float range is 0.0-1.0
                        if min_value is None:
                            min_value = 0.0
                        if max_value is None:
                            max_value = 1.0
            # return cv2.normalize(image_gray, None, min_value, max_value, cv2.NORM_MINMAX, cv2.CV_8U)
            range_scale_factor = 255.0 / (max_value - min_value)
            return np.round((image_gray - min_value) * range_scale_factor).astype(np.uint8)
    
        def _colorize(self, image, colormap=None, min_value=None, max_value=None, dynamic_range=None):
            if colormap is None:
                colormap = cv2.COLORMAP_JET
            if dynamic_range is None:
                dynamic_range = True
            scaled = self._convert_to_GRAY_8U(image, min_value, max_value, dynamic_range)
            return cv2.applyColorMap(scaled, colormap)
    
        @staticmethod
        def _rs_colorize(depth_frame, colormap=None, min_value=None, max_value=None, visual_preset=None):
            global colorizer
    
            if colormap is None:
                colormap = 0
            if visual_preset is None:
                if min_value and max_value:
                    visual_preset = 1
                elif min_value and max_value is None:
                    visual_preset = 2
                elif min_value is None and max_value:
                    visual_preset = 3
                else:
                    visual_preset = 0
    
            # Apply options to colorizer
            if min_value:
                colorizer.set_option(rs.option.min_distance, min_value)
            if max_value:
                colorizer.set_option(rs.option.max_distance, max_value)
            # colorizer.set_option(rs.option.histogram_equalization_enabled, 0)
            colorizer.set_option(rs.option.visual_preset, visual_preset)  # 0=Dynamic, 1=Fixed, 2=Near, 3=Far
            colorizer.set_option(rs.option.color_scheme,
                                 colormap)  # 0=Jet, 1=Classic, 2=WhiteToBlack, 3=BlackToWhite, 4=Bio, 5=Cold, 6=Warm, 7=Quantized, 8=Pattern
    
            return colorizer.colorize(depth_frame)
    
        @staticmethod
        def _convert_rs_intrinsics_to_opencv_matrix(rs_intrinsics):
            fx = rs_intrinsics.fx
            fy = rs_intrinsics.fy
            cx = rs_intrinsics.ppx
            cy = rs_intrinsics.ppy
            s = 0  # skew
            return np.array([[fx, s, cx],
                             [0.0, fy, cy],
                             [0.0, 0.0, 1.0]]).copy()
    
        @staticmethod
        def _convert_rs_extrinsics_to_opencv_matrix(rs_extrinsics):
            # https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
            extrinsics_rotation = np.asanyarray(rs_extrinsics.rotation).reshape(3, 3).copy()
            extrinsics_translation = np.asanyarray(rs_extrinsics.translation).reshape(1, 3).copy()
            extrinsics_projection = np.concatenate((extrinsics_rotation, extrinsics_translation.T), axis=1)
            extrinsics_projection = np.concatenate((extrinsics_projection, np.array([[0, 0, 0, 1]])), axis=0)
            return extrinsics_projection  # , extrinsics_rotation, extrinsics_translation
    
        @staticmethod
        def _create_rs_pointcloud(pointcloud, depth_frame):
            points = pointcloud.calculate(depth_frame)
            vtx = np.asanyarray(points.get_vertices())
            return vtx.view(np.float32).reshape(vtx.shape + (-1,)).copy(), points
    
        @staticmethod
        def _create_rs_pointcloud_texture(pointcloud, color_frame, points):
            pointcloud.map_to(color_frame)
            tex = np.asanyarray(points.get_texture_coordinates())
            return tex.view(np.float32).reshape(tex.shape + (-1,)).copy()
    
        @staticmethod
        def _create_pointcloud(image_depth, depth_intrinsics):
            arr_depth = image_depth * 0.001
            cx = depth_intrinsics[0, 2]
            cy = depth_intrinsics[1, 2]
            fx = depth_intrinsics[0, 0]
            fy = depth_intrinsics[1, 1]
            arr = np.indices(arr_depth.shape).transpose(1, 2, 0).astype(arr_depth.dtype)
            arr = arr[..., ::-1]
            arr[:, :, 0] = (arr[:, :, 0] - cx) / fx * arr_depth
            arr[:, :, 1] = (arr[:, :, 1] - cy) / fy * arr_depth
            return np.dstack((arr, arr_depth))
    
        def _create_pointcloud_texture(self, image_color, color_intrinsics, color_to_depth_extrinsics):
            raise NotImplementedError()
    
        def __init__(self, frame_set, frame_id=None, timestamp=None, use_frame_blocking_methods=True, *args, **kwargs):
            # Frame must be cloned and released to allow the next acquisition to occur
            # Frame is not serializable, so the main goal is to capture the color/depth images and their intrinsics/extrinsics for downstream processing
            # It's unfortunate that the D435 doesn't provide a non-blocking way yto do this, as their built-in functions are efficient but limit performance to 15FPS
            # https://dev.intelrealsense.com/docs/projection-texture-mapping-and-occlusion-with-intel-realsense-depth-cameras
            self._use_frame_blocking_methods = use_frame_blocking_methods
    
            # Extract color image
            color_frame = frame_set.get_color_frame()
            self._image_color = np.asanyarray(color_frame.get_data()).copy()
    
            # Extract depth image
            depth_frame = frame_set.get_depth_frame()
            self._image_depth = np.asanyarray(depth_frame.get_data()).copy()
    
            self._pointcloud = None
            self._pointcloud_texture = None
            self._image_color_aligned = None
            self._image_depth_aligned = None
            self._image_depth_colorized = None
            self._image_depth_aligned_colorized = None
            self._image_depth_8U = None
            self._image_depth_8U_min = None
            self._image_depth_8U_max = None
            if frame_id:
                self._frame_id = frame_id
            else:
                self._frame_id = frame_set.frame_number
            if timestamp:
                self._timestamp = timestamp
            else:
                self._timestamp = frame_set.timestamp
            self.__dict__.update(kwargs)
    
            # Intrinsics map from camera space to world coordinate space
            # Extrinsics map within world space
            # ie, to get pixels from dept to color, intrinsic from depth to depth-in-world, extrinsics from depth-in-world to color-in-world, intrinsic from color-in-world to color
    
            # Get depth intrinsics
            depth_profile = frame_set.get_depth_frame().get_profile()
            depth_video_stream_profile = depth_profile.as_video_stream_profile()
            rs_depth_intrinsics = depth_video_stream_profile.get_intrinsics()
            self._depth_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_depth_intrinsics)
    
            # Get color intrinsics
            color_profile = frame_set.get_color_frame().get_profile()
            color_video_stream_profile = color_profile.as_video_stream_profile()
            rs_color_intrinsics = color_video_stream_profile.get_intrinsics()
            self._color_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_color_intrinsics)
    
            # Get depth_to_color extrinsics
            rs_depth_to_color_extrinsics = depth_video_stream_profile.get_extrinsics_to(color_video_stream_profile)
            self._depth_to_color_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_depth_to_color_extrinsics)
    
            # Get color_to_depth extrinsics
            rs_color_to_depth_extrinsics = color_video_stream_profile.get_extrinsics_to(depth_video_stream_profile)
            self._color_to_depth_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_color_to_depth_extrinsics)
    
            # https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/EPSRC_SSAZ/node3.html
            # I=intrinsic matrix, 3x3
            # E=extrinsic matrix, 3x3
            # project 3D points to images
            # cv2.Rodrigues(rotation1, rvec1); // 3x3 rot matrix to 3x1
            # image_pixel_points = cv2.projectPoints(1xN 3dpoints vector, np.zeros(3), np.zeros(3), cameraMatrix, None)
            # image_pixels_array = image_pixels_array.reshape(-1, 2).astype(np.uint8)
    
            # Project 3D points to images
            # image1_pixel_points = cv2.perspectiveTransform(depth image, 4x4 perspective transform matrix)
    
            if use_frame_blocking_methods:
                # Get pointcloud
                global pointcloud
                if pointcloud is None:
                    pointcloud = rs.pointcloud()
                self._pointcloud, points = self._create_rs_pointcloud(pointcloud, depth_frame)
    
                # Get pointcloud texture mapping
                self._pointcloud_texture = self._create_rs_pointcloud_texture(pointcloud, color_frame, points)
    
                # Align the color frame to depth frame and extract color image
                global align_to_depth
                if align_to_depth is None:
                    align_to_depth = rs.align(rs.stream.depth)
                color_frame_aligned = align_to_depth.process(frame_set).get_color_frame()
                self._image_color_aligned = np.asanyarray(color_frame_aligned.get_data()).copy()
    
                # Align the depth frame to color frame and extract depth image
                global align_to_color
                if align_to_color is None:
                    align_to_color = rs.align(rs.stream.color)
                depth_frame_aligned = align_to_color.process(frame_set).get_depth_frame()
                self._image_depth_aligned = np.asanyarray(depth_frame_aligned.get_data()).copy()
    
                # Colorize depth images
                global colorizer
                if colorizer is None:
                    colorizer = rs.colorizer()
                depth_frame_colorized = self._rs_colorize(depth_frame)
                self._image_depth_colorized = np.asanyarray(depth_frame_colorized.get_data()).copy()
                depth_frame_aligned_colorized = self._rs_colorize(depth_frame_aligned)
                self._image_depth_aligned_colorized = np.asanyarray(depth_frame_aligned_colorized.get_data()).copy()
    

    You use it by passing the frame_set from the datastream like so:

    # First import the library
    import pyrealsense2 as rs
    
    try:
        # Create a context object. This object owns the handles to all connected realsense devices
        pipeline = rs.pipeline()
    
        # Configure streams
        config = rs.config()
        config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
        config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
    
        # Start streaming
        pipeline.start(config)
    
        while True:
            # This call waits until a new coherent set of frames is available on a device
            # Calls to get_frame_data(...) and get_frame_timestamp(...) on a device will return stable values until wait_for_frames(...) is called
            frames = pipeline.wait_for_frames()
            image_packet = IntelD435ImagePacket(frames)
        exit(0)
    except Exception as e:
        print(e)
        pass