I have a dataframe with X position data for hundreds of participants, and three grouping variables (with each participant's X data being 1000 points in length). Preview of dataframe:
X Z participantNum obsScenario startPos targetPos
16000 -16.0 -5.0 6950203 2 2 3
16001 -16.0 -5.0 6950203 2 2 3
16002 -16.0 -5.0 6950203 2 2 3
16003 -16.0 -5.0 6950203 2 2 3
16004 -16.0 -5.0 6950203 2 2 3
16005 -16.0 -5.0 6950203 2 2 3
16006 -16.0 -5.0 6950203 2 2 3
16007 -16.0 -5.0 6950203 2 2 3
16008 -16.0 -5.0 6950203 2 2 3
16009 -16.0 -5.0 6950203 2 2 3
I need to pass all of the X data into a function, with the X data grouped by the 3 grouping variables and with each X data array in its own column. Right now they are all stacked on top of each other.
These are the functions: (It goes through calc_confidence_interval first)
def mean_confidence_interval(data, confidence=0.95):
a = 1.0*np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scp.stats.t._ppf((1+confidence)/2., n-1)
return m, m+h, m-h
def calc_confidence_interval(data):
mean_ci = []
top_ci =[]
bottom_ci=[]
for column in data.T:
m, t,b=mean_confidence_interval(column)
mean_ci.append(m); top_ci.append(t);bottom_ci.append(b)
return mean_ci, top_ci, bottom_ci
And I'm trying to make something like this work:
calc_CI = df.groupby(['obsScenario', 'startPos', 'targetPos'])['X'].apply(calc_confidence_interval)
calc_CI = calc_CI.join(calc_CI.rename('calc_CI'),
on = ['obsScenario', 'startPos', 'targetPos'])
But I'm getting the error: TypeError: object of type 'numpy.float64' has no len(), because it is currently passing the X data as a single array rather than separate columns for each participant, grouped by the three grouping variables.
## Traceback
```python
--------------------------------------------------------------------------
calc_CI = allDataF.groupby(['obsScenario', 'startPos', 'targetPos'])['X'].apply(calc_confidence_interval)
File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/generic.py", line 226, in apply
return super().apply(func, *args, **kwargs)
File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/groupby.py", line 870, in apply
return self._python_apply_general(f, self._selected_obj)
File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/groupby.py", line 892, in _python_apply_general
keys, values, mutated = self.grouper.apply(f, data, self.axis)
File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/ops.py", line 213, in apply
res = f(group)
File "/Users/lillyrigoli/Desktop/PhD/PhD_Projects/RouteSelection/Analysis_RS/load_filter_plot_CI_RS.py", line 221, in calc_confidence_interval
m, t,b=mean_confidence_interval(column)
File "/Users/lillyrigoli/Desktop/PhD/PhD_Projects/RouteSelection/Analysis_RS/load_filter_plot_CI_RS.py", line 210, in mean_confidence_interval
n = len(a)
TypeError: object of type 'numpy.float64' has no len()
The functions return the confidence intervals (top, mean & bottom) as lists.
The output I should get at the end is like this, with the output (mean_ci, top_ci, bottom_ci arrays) for each grouping combination.
obsScenario startPos targetPos mean_ci top_ci bottom_ci
0 1 1 [array of length 1000] [array of length 1000] [array of length 1000]
0 2 2 [array of length 1000] [array of length 1000] [array of length 1000]
1 1 1 [array of length 1000] [array of length 1000] [array of length 1000]
1 2 2 [array of length 1000] [array of length 1000] [array of length 1000]
I think you may have more success explicitly iterating over the groups than trying to use apply, which seems to be adding complexity to what you are trying to do.
results = []
groupby = df.groupby(['obsScenario', 'startPos', 'targetPos'])
for group_name in groupby:
groupdf = groupby.get_group(group_name)
# call your functions here
# append results to results
It may also be the case that you just need to pass additional arguments to apply for your functions to work as intended. apply
has a parameter called args
which takes a tuple of positional arguments to pass to the applied function in addition to the array/series.
calc_CI = df.groupby(['obsScenario', 'startPos', 'targetPos'])['X'].apply(calc_confidence_interval, args=(arg1, arg2, ...))