Search code examples
pythonpytorchtensordimensionsindex-error

IndexError: Dimension out of range - PyTorch dimension expected to be in range of [-1, 0], but got 1


Despite already numerous answers on this very topic, failing to see in the example below (extract from https://gist.github.com/lirnli/c16ef186c75588e705d9864fb816a13c on Variational Recurrent Networks) which input and output dimensions trigger the error.

Having tried to change dimensions in torch.cat and also suppress the call to squeeze(), the error persists:

<ipython-input-51-cdc928891ad7> in generate(self, hidden, temperature)
     56         x_sample = x = x_out.div(temperature).exp().multinomial(1).squeeze()
     57         x = self.phi_x(x)
---> 58         tc = torch.cat([x,z], dim=1)
     59 
     60         hidden_next = self.rnn(tc,hidden)

IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)

Thus how to shape the dimensions in x and z in tc = torch.cat([x,z], dim=1)? Note the code as follows:

import torch
from torch import nn, optim
from torch.autograd import Variable

class VRNNCell(nn.Module):
    def __init__(self):
        super(VRNNCell,self).__init__()
        self.phi_x = nn.Sequential(nn.Embedding(128,64), nn.Linear(64,64), nn.ELU())
        self.encoder = nn.Linear(128,64*2) # output hyperparameters
        self.phi_z = nn.Sequential(nn.Linear(64,64), nn.ELU())
        self.decoder = nn.Linear(128,128) # logits
        self.prior = nn.Linear(64,64*2) # output hyperparameters
        self.rnn = nn.GRUCell(128,64)

    def forward(self, x, hidden):
        x = self.phi_x(x)
        # 1. h => z
        z_prior = self.prior(hidden)
        # 2. x + h => z
        z_infer = self.encoder(torch.cat([x,hidden], dim=1))
        # sampling
        z = Variable(torch.randn(x.size(0),64))*z_infer[:,64:].exp()+z_infer[:,:64]
        z = self.phi_z(z)
        # 3. h + z => x
        x_out = self.decoder(torch.cat([hidden, z], dim=1))
        # 4. x + z => h
        hidden_next = self.rnn(torch.cat([x,z], dim=1),hidden)
        return x_out, hidden_next, z_prior, z_infer

    def calculate_loss(self, x, hidden):
        x_out, hidden_next, z_prior, z_infer = self.forward(x, hidden)
        # 1. logistic regression loss
        loss1 = nn.functional.cross_entropy(x_out, x) 
        # 2. KL Divergence between Multivariate Gaussian
        mu_infer, log_sigma_infer = z_infer[:,:64], z_infer[:,64:]
        mu_prior, log_sigma_prior = z_prior[:,:64], z_prior[:,64:]
        loss2 = (2*(log_sigma_infer-log_sigma_prior)).exp() \
                + ((mu_infer-mu_prior)/log_sigma_prior.exp())**2 \
                - 2*(log_sigma_infer-log_sigma_prior) - 1
        loss2 = 0.5*loss2.sum(dim=1).mean()
        return loss1, loss2, hidden_next
    
    def generate(self, hidden=None, temperature=None):
        if hidden is None:
            hidden=Variable(torch.zeros(1,64))
        if temperature is None:
            temperature = 0.8
        # 1. h => z
        z_prior = self.prior(hidden)
        # sampling
        z = Variable(torch.randn(z_prior.size(0),64))*z_prior[:,64:].exp()+z_prior[:,:64]
        z = self.phi_z(z)
        # 2. h + z => x
        x_out = self.decoder(torch.cat([hidden, z], dim=1))
        # sampling
        x_sample = x = x_out.div(temperature).exp().multinomial(1).squeeze()
        x = self.phi_x(x)
        # 3. x + z => h
        # hidden_next = self.rnn(torch.cat([x,z], dim=1),hidden)
        tc = torch.cat([x,z], dim=1)
        hidden_next = self.rnn(tc,hidden)
        return x_sample, hidden_next
    
    def generate_text(self, hidden=None,temperature=None, n=100):
        res = []
        hidden = None
        for _ in range(n):
            x_sample, hidden = self.generate(hidden,temperature)
            res.append(chr(x_sample.data[0]))
        return "".join(res)
        

# Test
net = VRNNCell()
x = Variable(torch.LongTensor([12,13,14]))
hidden = Variable(torch.rand(3,64))
output, hidden_next, z_infer, z_prior = net(x, hidden)
loss1, loss2, _ = net.calculate_loss(x, hidden)
loss1, loss2

hidden = Variable(torch.zeros(1,64))
net.generate_text()

Solution

  • The error

    IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)

    means that you're trying to access an index that doesn't exist in the tensor. For instance, the following code would cause the same IndexError you're experiencing.

    # sample input tensors
    In [210]: x = torch.arange(4)
    In [211]: z = torch.arange(6)
    
    # trying to concatenate along the second dimension 
    # but the tensors have only one dimension (i.e., `0`).
    
    In [212]: torch.cat([x, z], dim=1)
    

    So, one way to overcome this is to promote the tensors to higher dimensions before concatenation, if that is what you need.

    # promoting tensors to 2D before concatenation
    In [216]: torch.cat([x[None, :], z[None, :]], dim=1)
    Out[216]: tensor([[0, 1, 2, 3, 0, 1, 2, 3, 4, 5]])
    

    Thus, in your case, you've to analyze and understand what shape you need for x so that it can be concatenated with z along dimension 1 and then the tc passed as input to self.rnn() along with hidden.

    As far as I can see, x[None, :] , z[None, :] should work.


    Debugging for successful training

    The code you posted has been written for PyTorch v0.4.1. A lot has changed in the PyTorch Python API since then, but the code was not updated.

    Below are the changes you need to make the code run and train successfully. Copy the below functions and paste it at appropriate places in your code.

    def generate(self, hidden=None, temperature=None):
            if hidden is None:
                hidden=Variable(torch.zeros(1,64))
            if temperature is None:
                temperature = 0.8
            # 1. h => z
            z_prior = self.prior(hidden)
            # sampling
            z = Variable(torch.randn(z_prior.size(0),64))*z_prior[:,64:].exp()+z_prior[:,:64]
            z = self.phi_z(z)
            # 2. h + z => x
            x_out = self.decoder(torch.cat([hidden, z], dim=1))
            # sampling
            x_sample = x = x_out.div(temperature).exp().multinomial(1).squeeze()
            x = self.phi_x(x)
            # 3. x + z => h
            x = x[None, ...]   # changed here
            xz = torch.cat([x,z], dim=1)  # changed here
            hidden_next = self.rnn(xz,hidden) # changed here
            return x_sample, hidden_next
    

    def generate_text(self, hidden=None,temperature=None, n=100):
            res = []
            hidden = None
            for _ in range(n):
                x_sample, hidden = self.generate(hidden,temperature)
                res.append(chr(x_sample.data))      # changed here
            return "".join(res)
    

    for epoch in range(max_epoch):
        batch = next(g)
        loss_seq = 0
        loss1_seq, loss2_seq = 0, 0
        optimizer.zero_grad()
        for x in batch:
            loss1, loss2, hidden = net.calculate_loss(Variable(x),hidden)
            loss1_seq += loss1.data  # changed here
            loss2_seq += loss2.data  # changed here
            loss_seq = loss_seq + loss1+loss2
        loss_seq.backward()
        optimizer.step()
        hidden.detach_()
        if epoch%100==0:
            print('>> epoch {}, loss {:12.4f}, decoder loss {:12.4f}, latent loss {:12.4f}'.format(epoch, loss_seq.data, loss1_seq, loss2_seq))  # changed here
            print(net.generate_text())
            print()
    

    Note: After these changes, the training loop at my end proceeds without any errors on PyTorch v1.7.1. Have a look at the comments with # changed here to understand the changes.