It's a meat peace, and I would like to measure the marble (white part). To do this I used this:
import numpy as np
import cv2
cv2.namedWindow('Image2', cv2.WINDOW_NORMAL) # Create window with freedom of dimensions
cv2.resizeWindow('Image2', 600, 600)
def increase_brightness(img, value=30):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
lim = 255 - value
v[v > lim] = 0
v[v <= lim] += value
final_hsv = cv2.merge((h, s, v))
return final_hsv
image = cv2.imread('image.jpeg')
image2 = increase_brightness(image)
lower_range=np.array([0, 155, 0])
upper_range=np.array([255,255,255])
mask=cv2.inRange(mask, lower_range, upper_range)
and I obtained this image:
but there is a noise in the final image. Is there a way to replace the black smallest pixels by white pixels, using, for example, the pixel size as a condition?
OR Is there a better approach to do this?
Here is one way using Python/OpenCV by using cv2.inRange() to threshold on white.
Input:
import cv2
import numpy as np
# load image
img = cv2.imread("meat.jpg")
# threshold on white
lower = (120,140,190)
upper = (255,255,255)
# create the mask and use it to change the colors
thresh = cv2.inRange(img, lower, upper)
# apply morphology to clean up small spots
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# count number of non-zero pixels
count = np.count_nonzero(thresh)
print("total white pixels =", count)
# write thresh to disk
cv2.imwrite("meat_thresh.png", thresh)
# display it
cv2.imshow("thresh", thresh)
cv2.waitKey(0)
Textual Information:
total white pixels = 41969