I'd like to binarize image before passing it to the dataloader, I have created a dataset class which works well. but in the __getitem__()
method I'd like to threshold the image:
def __getitem__(self, idx):
# Open image, apply transforms and return with label
img_path = os.path.join(self.dir, self.filelist[filename"])
image = Image.open(img_path)
label = self.x_data.iloc[idx]["label"]
# Applying transformation to the image
if self.transforms is not None:
image = self.transforms(image)
# applying threshold here:
my_threshold = 240
image = image.point(lambda p: p < my_threshold and 255)
image = torch.tensor(image)
return image, label
And then I tried to invoke the dataset:
data_transformer = transforms.Compose([
transforms.Resize((10, 10)),
transforms.Grayscale()
//transforms.ToTensor()
])
train_set = MyNewDataset(data_path, data_transformer, rows_train)
Since I have applied the threshold on a PIL object I need to apply afterwards a conversion to a tensor object , but for some reason it crashes. can somebody please assist me?
Why not apply the binarization after the conversion from PIL.Image
to torch.Tensor
?
class ThresholdTransform(object):
def __init__(self, thr_255):
self.thr = thr_255 / 255. # input threshold for [0..255] gray level, convert to [0..1]
def __call__(self, x):
return (x > self.thr).to(x.dtype) # do not change the data type
Once you have this transformation, you simply add it:
data_transformer = transforms.Compose([
transforms.Resize((10, 10)),
transforms.Grayscale(),
transforms.ToTensor(),
ThresholdTransform(thr_255=240)
])