Given this Dataframe:
df2 = pd.DataFrame([[3,3,3,3,3,3,5,5,5,5],[2,2,2,2,8,8,8,8,6,6]], columns=list('ABCDEFGHIJ'))
A B C D E F G H I J
0 3 3 3 3 3 3 5 5 5 5
1 2 2 2 2 8 8 8 8 6 6
I created 2 news columns which give for each row the max_freq and the max_freq_value:
df2["max_freq_val"] = df2.apply(lambda x: x.mode().agg(list), axis=1)
df2["max_freq"] = df2.loc[:, df2.columns != "max_freq_val"].apply(lambda x: x.value_counts().max(), axis=1)
A B C D E F G H I J max_freq_val max_freq
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
EDIT: I've edited my code inspired by the answer given by @rhug123.
Thanks to all of you for your answers.
Try this, it uses mode()
df2.assign(max_freq=pd.Series(df2.mode(axis=1).stack().groupby(level=0).agg(list)),
max_freq_value = df2.eq(df2.mode(axis=1)[0].squeeze(),axis=0).sum(axis=1))
or
df2.assign(freq = df2.eq((s := df2.mode(axis=1).stack().groupby(level=0).agg(list)).str[0],axis=0).sum(axis=1),val = s)