I want to draw an arrow or dots when 2 ma cross each other like there will up arrow when short ma cross above long ma etc. but I don't know how to plot when it is datetime. I try to use this code and it just give me errors.
#plot short ma and long ma
p.line(df['Date'], df['short_ma'], color='red')
p.line(df['Date'], df['long_ma'], color='black')
p.add_layout(Arrow(end=VeeHead(size=35), line_color="red",x_start=df['Date'], y_start=df['crossabove']+5, x_end=df['Date'], y_end=df['Date']))
#the crossabove + 5 so the arrow draw above where the cross occur
I post an image for the result i was expect the result i expect
code to plot candlestick chart and add arrow when 2 ema cross
import pandas as pd
import numpy as np
import timeit
import talib as tb
import datetime
import random
from bokeh.models import Arrow, NormalHead, OpenHead, VeeHead
from bokeh.plotting import figure, output_file, show
df = pd.read_csv("D:/testdata/msft.csv") #open csv
df['short_ema'] = tb.EMA(df['Close'], 100) # short ema
df['long_ema'] = tb.EMA(df['Close'], 200) #long ema
df = df.round(2) #round to 2
df['Date']=pd.to_datetime(df['Date'])
#print(df.dtypes)
#chart figures
p = figure(plot_width=1400, plot_height=860,
x_axis_type='datetime',)
#candle
inc = df.Close > df.Open
dec = df.Open > df.Close
w = 12*60*60*1000 # half day in ms
p.segment(df['Date'], df['High'], df.Date, df.Low, color="black")
p.vbar(df['Date'][inc], w, df.Open[inc], df.Close[inc], fill_color="#D5E1DD", line_color="black")
p.vbar(df['Date'][dec], w, df.Open[dec], df.Close[dec], fill_color="#F2583E", line_color="black")
#ma lines
p.line(df['Date'], df['short_ema'], color='red')
p.line(df['Date'], df['long_ema'], color='black')
#df.to_csv("D:/testdata/msft result.csv")
#loop for cross add arrow
match = df[((df.short_ema.shift(1) > df.long_ema.shift(1)) & (df.short_ema.shift(2)< df.long_ema.shift(2)))]
for x_, (y_, _) in match[['Date', 'long_ema']].iterrows():
print(x_,y_)
p.add_layout(Arrow(end=VeeHead(line_color="blue", line_width=4, fill_color='blue'),
line_color='blue', line_width=4,
x_start=df['Date'], y_start= y_ + 3,
x_end=df['Date'], y_end=y_ + 1))
show(p)
Arrow
, x_start
and x_end
must be a datetime
format, not a string
or a dataframe
.
x_start=pd.to_datetime('2010-10-09')
x_
is the date from the datetime index.y_
is the y intersection point, to which an offset (e.g. +5
) may be addedimport pandas as pd
from bokeh.models import Arrow, NormalHead, OpenHead, VeeHead, Label
from bokeh.plotting import figure, show
from bokeh.sampledata.glucose import data
from bokeh.io import output_notebook, curdoc # output_file
output_notebook()
# for a file, uncomment the next line and output_file in the imports
# output_file("box_annotation.html", title="box_annotation.py example")
TOOLS = "pan,wheel_zoom,box_zoom,reset,save"
#reduce data size
data = data.loc['2010-10-06':'2010-10-13'].copy()
# test line to show where glucose and line cross each other
data['line'] = 170
# determine where the lines cross
match = data[data.glucose == data.line]
p = figure(x_axis_type="datetime", tools=TOOLS)
p.line(data.index.to_series(), data['glucose'], line_color="gray", line_width=1, legend_label="glucose")
p.line(data.index.to_series(), data['line'], line_color="purple", line_width=1, legend_label="line")
# add arrows to all spots where the lines are equal
for x_, (y_, _) in match[['glucose', 'line']].iterrows():
p.add_layout(Arrow(end=VeeHead(line_color="blue", line_width=4, fill_color='blue'),
line_color='blue', line_width=4,
x_start=x_, y_start= y_ + 130,
x_end=x_, y_end=y_ + 5))
p.title.text = "Glucose Range"
p.xgrid[0].grid_line_color=None
p.ygrid[0].grid_line_alpha=0.5
p.xaxis.axis_label = 'Time'
p.yaxis.axis_label = 'Value'
show(p)
x_start=df['Date']
& x_end=df['Date']
are used instead of x_
, which should be a single date value, not a Series
of dates.for-loop
selects the incorrect values to be x_
and y_
. In my original match
, the dates are in the index, but your match
has dates in a column.match = df[((df.short_ema.shift(1) > df.long_ema.shift(1)) & (df.short_ema.shift(2)< df.long_ema.shift(2)))]
for x_, (y_, _) in match[['Date', 'long_ema']].iterrows():
print(x_,y_)
p.add_layout(Arrow(end=VeeHead(line_color="blue", line_width=4, fill_color='blue'),
line_color='blue', line_width=4,
x_start=df['Date'], y_start= y_ + 3,
x_end=df['Date'], y_end=y_ + 1))
for _, (x_, y_) in match[['Date', 'long_ema']].iterrows():
print(x_,y_)
p.add_layout(Arrow(end=VeeHead(line_color="blue", line_width=4, fill_color='blue'),
line_color='blue', line_width=4,
x_start=x_, y_start= y_ + 3,
x_end=x_, y_end=y_ + 1))
show(p)