I have this interactive plot in python:
import ipywidgets as widgets
import plotly.graph_objects as go
from numpy import linspace
def leaf_plot(sense, spec):
fig = go.Figure()
x = linspace(0,1,101)
x[0] += 1e-16
x[-1] -= 1e-16
positive = sense*x/(sense*x + (1-spec)*(1-x))
#probability a person is infected, given a positive test result,
#P(p|pr) = P(pr|p)*P(p)/P(pr)
# = P(pr|p)*P(p)/(P(pr|p)*P(p) + P(pr|n)*P(n))
# = sense*P(p)/( sense*P(p) +(1-spec)*P(n))
negative = 1-spec*(1-x)/((1-sense)*x + spec*(1-x))
fig.add_trace(
go.Scatter(x=x, y = positive, name="Positive",marker=dict( color='red'))
)
fig.add_trace(
go.Scatter(x=x, y = negative,
name="Negative",
mode = 'lines+markers',
marker=dict( color='green'))
)
fig.update_xaxes(title_text = "Base Rate")
fig.update_yaxes(title_text = "Post-test Probability")
fig.show()
sense_ = widgets.FloatSlider(
value=0.5,
min=0,
max=1.0,
step=0.01,
description='Sensitivity:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.2f',
)
spec_ = widgets.FloatSlider(
value=0.5,
min=0,
max=1.0,
step=0.01,
description='Specificity:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.2f',
)
ui = widgets.VBox([sense_, spec_])
out = widgets.interactive_output(leaf_plot, {'sense': sense_, 'spec': spec_})
display(ui, out)
How can I export this so that it can be viewed as a standalone web page in a browser, say as HTML, while retaining the interactivity, as e.g. in https://gabgoh.github.io/COVID/index.html ?
Using plotly's fig.write_html() option I get a standalone web page, but this way I lose the sliders.
With some modification, plotly allows at most for a single slider (the ipywidgets are not included in the plotly figure object).
Plus, in plotly, the said slider basically controls the visibility of pre-calculated traces (see e.g. https://plotly.com/python/sliders/), which restricts the interactivity (sometimes the parameter space is huge).
What's the best way to go?
(I don't necessarily need to stick with plotly/ipywidgets)
you need to rework things a bit, but you can achieve what you want with dash and Heroku.
first you need to modify leaf_plot() to return a figure object.
from numpy import linspace
def leaf_plot(sense, spec):
fig = go.Figure()
x = linspace(0,1,101)
x[0] += 1e-16
x[-1] -= 1e-16
positive = sense*x/(sense*x + (1-spec)*(1-x))
negative = 1-spec*(1-x)/((1-sense)*x + spec*(1-x))
fig.add_trace(
go.Scatter(x=x, y = positive, name="Positive",marker=dict( color='red'))
)
fig.add_trace(
go.Scatter(x=x, y = negative,
name="Negative",
mode = 'lines+markers',
marker=dict( color='green'))
)
fig.update_layout(
xaxis_title="Base rate",
yaxis_title="After-test probability",
)
return fig
Then write the dash app:
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
# Build App
app = JupyterDash(__name__)
app.layout = html.Div([
html.H1("Interpreting Test Results"),
dcc.Graph(id='graph'),
html.Label([
"sensitivity",
dcc.Slider(
id='sensitivity-slider',
min=0,
max=1,
step=0.01,
value=0.5,
marks = {i: '{:5.2f}'.format(i) for i in linspace(1e-16,1-1e-16,11)}
),
]),
html.Label([
"specificity",
dcc.Slider(
id='specificity-slider',
min=0,
max=1,
step=0.01,
value=0.5,
marks = {i: '{:5.2f}'.format(i) for i in linspace(1e-16,1-1e-16,11)}
),
]),
])
# Define callback to update graph
@app.callback(
Output('graph', 'figure'),
Input("sensitivity-slider", "value"),
Input("specificity-slider", "value")
)
def update_figure(sense, spec):
return leaf_plot(sense, spec)
# Run app and display result inline in the notebook
app.run_server()
If you execute this in a jupyter notebook, you will only be able to access your app locally.
If you want to publish, you can try Heroku