Search code examples
apache-sparkpysparkspark-streamingapache-kafka-streams

PySpark - Create a pyspark dataframe using Kakfa Json message


I am using pyspark structed streaming and reading data from Kafka topic which is in Json complex format.

I am using Spark Structred Streaming Format as Kafka and code as below -

spark = SparkSession.builder \
        .appName("PythonSparkStreamingKafka") \
        .getOrCreate()

kafkaStreamDF = spark \
            .readStream \
            .format("kafka") \
            .option("kafka.bootstrap.servers", "localhost:9092") \
            .option("subscribe", "main.test.mysql.main.test_bank_data") \
            .option("startingOffsets", "earliest") \
            .load()

kafkaStreamDF1 = kafkaStreamDF.selectExpr("CAST(value AS STRING)")

message_schema = StructType().add("payload",StringType())
kafkaStreamDF2 = kafkaStreamDF1.select(from_json(col("value"),message_schema).alias("message"))

consoleOutput = kafkaStreamDF2.writeStream \
                .outputMode("append") \
                .format("console") \
                .option("truncate", "false") \
                .start()

I have extracted the data from message till Payload part of kafka json message and its output on console like below -

|[{"before":null,"after":{"transaction_id":20,"account_no":409000611074,"transaction_date":18490,"transaction_details":"INDO GIBL Indiaforensic STL12071 ","value_date":18490,"withdrawal_amt":"AMTWoA==","deposit_amt":null,"balance_amt":"K6LiGA=="},"source":{"version":"1.4.0-SNAPSHOT","connector":"mysql","name":"main.test.mysql","ts_ms":0,"snapshot":"true","db":"main","table":"test_bank_data","server_id":0,"gtid":null,"file":"binlog.000584","pos":15484438,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1611582308774,"transaction":null}]|

|[{"before":null,"after":{"transaction_id":21,"account_no":409000611074,"transaction_date":18490,"transaction_details":"INDO GIBL Indiaforensic STL13071 ","value_date":18490,"withdrawal_amt":"AV741A==","deposit_amt":null,"balance_amt":"KkPpRA=="},"source":{"version":"1.4.0-SNAPSHOT","connector":"mysql","name":"main.test.mysql","ts_ms":0,"snapshot":"true","db":"main","table":"test_bank_data","server_id":0,"gtid":null,"file":"binlog.000584","pos":15484438,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1611582308774,"transaction":null}]|

Now I would like to extract the data of after part and read the filed data in dataframe like below -

transaction_id|account_no|transaction_date|transaction_details|value_date|withdrawal_amt|deposit_amt|   balance_amt

20              | 409000611074  |   16/08/2020       |  INDO GIBL Indiaforensic STL12071 |  16/08/2020  |   129000.00      |    (null)      | 7320950.00

21              | 409000611074  |   16/08/2020       |  INDO GIBL Indiaforensic STL13071 |  16/08/2020  |   230013.00      |    (null)      | 7090937.00

Please suggest me how to achieve this expected output in a pyspark dataframe?

Added below the exact value feild of kafka message -

{"schema":{"type":"struct","fields":[{"type":"struct","fields":[{"type":"int32","optional":false,"field":"transaction_id"},{"type":"int64","optional":false,"field":"account_no"},{"type":"int32","optional":true,"name":"io.debezium.time.Date","version":1,"field":"transaction_date"},{"type":"string","optional":true,"field":"transaction_details"},{"type":"int32","optional":true,"name":"io.debezium.time.Date","version":1,"field":"value_date"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"withdrawal_amt"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"deposit_amt"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"balance_amt"}],"optional":true,"name":"main.test.mysql.main.test_bank_data.Value","field":"before"},{"type":"struct","fields":[{"type":"int32","optional":false,"field":"transaction_id"},{"type":"int64","optional":false,"field":"account_no"},{"type":"int32","optional":true,"name":"io.debezium.time.Date","version":1,"field":"transaction_date"},{"type":"string","optional":true,"field":"transaction_details"},{"type":"int32","optional":true,"name":"io.debezium.time.Date","version":1,"field":"value_date"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"withdrawal_amt"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"deposit_amt"},{"type":"bytes","optional":true,"name":"org.apache.kafka.connect.data.Decimal","version":1,"parameters":{"scale":"2","connect.decimal.precision":"12"},"field":"balance_amt"}],"optional":true,"name":"main.test.mysql.main.test_bank_data.Value","field":"after"},{"type":"struct","fields":[{"type":"string","optional":false,"field":"version"},{"type":"string","optional":false,"field":"connector"},{"type":"string","optional":false,"field":"name"},{"type":"int64","optional":false,"field":"ts_ms"},{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":{"allowed":"true,last,false"},"default":"false","field":"snapshot"},{"type":"string","optional":false,"field":"db"},{"type":"string","optional":true,"field":"table"},{"type":"int64","optional":false,"field":"server_id"},{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},{"type":"int64","optional":true,"field":"thread"},{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connector.mysql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":[{"type":"string","optional":false,"field":"id"},{"type":"int64","optional":false,"field":"total_order"},{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transaction"}],"optional":false,"name":"main.test.mysql.main.test_bank_data.Envelope"},"payload":{"before":null,"after":{"transaction_id":146,"account_no":409000611076,"transaction_date":18652,"transaction_details":"TRF FROM Indiaforensic SERVICES","value_date":18652,"withdrawal_amt":"AA==","deposit_amt":"B6Eg","balance_amt":"B6Eg"},"source":{"version":"1.4.0-SNAPSHOT","connector":"mysql","name":"main.test.mysql","ts_ms":1611587463000,"snapshot":"false","db":"main","table":"test_bank_data","server_id":19105,"gtid":null,"file":"binlog.000584","pos":46195052,"row":0,"thread":1604558,"query":null},"op":"c","ts_ms":1611587463181,"transaction":null}}

From here have i have converted into string on DF1 and taken the part of Payload into DF2.

-- Final working condition comments -- Added after transform the SMT in Debezium MySQL connector in Kafka connect side I am getting the message value in PySpark structred streaming with Kafaka as below -

Value = 
{"transaction_id":21,"account_no":409000611074,"transaction_date":"2020-08- 
229","transaction_details":"INDO GIBL Indiaforensic STL13071 
","value_date":"2020-08-22","withdrawal_amt":"230013.00","deposit_amt":null,"balance_amt":"7090937.00"}

message_schema = StructType([
StructField('transaction_id', IntegerType(), True),
StructField('account_no', LongType(), True),
StructField('transaction_date', StringType(), True),
StructField('transaction_details', StringType(), True),
StructField('value_date', StringType(), True),
StructField('withdrawal_amt', StringType(), True),
StructField('deposit_amt', StringType(), True),
StructField('balance_amt', StringType(), True)   
]
)

Solution

  • You can pass the schema of the string JSON messages to the from_json function.

    Having your messages like this:

    #+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    #|value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
    #+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    #|[{"before":null,"after":{"transaction_id":20,"account_no":409000611074,"transaction_date":18490,"transaction_details":"INDO GIBL Indiaforensic STL12071 ","value_date":18490,"withdrawal_amt":"AMTWoA==","deposit_amt":null,"balance_amt":"K6LiGA=="},"source":{"version":"1.4.0-SNAPSHOT","connector":"mysql","name":"main.test.mysql","ts_ms":0,"snapshot":"true","db":"main","table":"test_bank_data","server_id":0,"gtid":null,"file":"binlog.000584","pos":15484438,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1611582308774,"transaction":null}]|
    #|[{"before":null,"after":{"transaction_id":21,"account_no":409000611074,"transaction_date":18490,"transaction_details":"INDO GIBL Indiaforensic STL13071 ","value_date":18490,"withdrawal_amt":"AV741A==","deposit_amt":null,"balance_amt":"KkPpRA=="},"source":{"version":"1.4.0-SNAPSHOT","connector":"mysql","name":"main.test.mysql","ts_ms":0,"snapshot":"true","db":"main","table":"test_bank_data","server_id":0,"gtid":null,"file":"binlog.000584","pos":15484438,"row":0,"thread":null,"query":null},"op":"c","ts_ms":1611582308774,"transaction":null}]|
    #+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    

    You can modify your code to parse the after field in your json into a MapType then you select the keys you want as columns:

    message_schema = StructType([
         StructField('before', MapType(StringType(), StringType(), True), True),
         StructField('after', MapType(StringType(), StringType(), True), True),
         StructField('source', MapType(StringType(), StringType(), True), True),
         StructField('op', StringType(), True),
         StructField('ts_ms', StringType(), True),
         StructField('transaction', StringType(), True)
         ]
    )
    
    after_fields = [
        "account_no", "balance_amt", "deposit_amt", "transaction_date",
        "transaction_details", "transaction_id", "value_date", "withdrawal_amt"
    ]
    
    # parse json strings using from_json and select message.after.*
     kafkaStreamDF.withColumn(
         "message",
         F.from_json(F.col("value"), message_schema)
     ).select(
         *[F.col("message.after").getItem(f).alias(f) for f in after_fields]
     ).writeStream \
      .outputMode("append") \
      .format("console") \
      .option("truncate", "false") \
      .start() \
      .awaitTermination()