Can't figure out how to drop NaN values from specific column according to another column specific value.
Part of DataFrame(df
):
vol. group
1186 10,448,898 1
1187 nan 0
1188 35,047,520 1
...
8329 130,703 0
8330 241,489 1
8332 nan 1
8333 101,142 0
8334 nan 1
I need to drop nan values from vol.
but only when according value in group
is 1.
I tried:
df.loc[df['group'] == 1,'vol.'].dropna(inplace=True)
But df
still have all values as dropna takes no effect.
You can change logic - select all values without 1
with nan
s in boolean indexing
:
#if necessary convert strings nan to missing values `NaN`s
df['vol.'] = df['vol.'].replace('nan', np.nan)
df = df[(df['group'] != 1) | df['vol.'].notna()]
print (df)
vol. group
1186 10,448,898 1
1187 NaN 0
1188 35,047,520 1
8329 130,703 0
8330 241,489 1
8333 101,142 0