I am trying to create a structure to use in a C library provided (DLL), How the following structure (given in the documentation) can be defined?
#define A 10
#define B 20
typedef struct
{
int32_t size;
int32_t num;
char buf1[A][B];
char buf2[A][B];
char buf3[A][B];
} INSTRUCT;
My attempt to define it in python using ctypes was like so:
from ctypes import*
char_buff1 = ((c_char * 10) * 20)
char_buff2 = ((c_char * 10) * 20)
char_buff3 = ((c_char * 10) * 20)
class INSTRUCT(Structure):
_fields_=[("size",c_int32),("num",c_int32),("buf1",char_buff1),("buf2",char_buff2),("buf3",char_buff3)]
Can int32_t
be replaced with c_int_32
in ctypes?
Is it correct way to define the structure?
Then I tried to feed the pointer of the structure to the DLL function and check what it returns as follows:
dlllib = CDLL("some.dll")
somefunction = dlllib.some_function
somefunction.argtypes = [POINTER(INSTRUCT)]
INSTRUCT().size
INSTRUCT().num
print(np.ctypeslib.as_array(INSTRUCT().buf1))
However, I can only the return is 0
and unmodified by the function -- equal to the one defined before the C function call.
I am not sure at which stage the problem occurs, however, there are no errors, the code executes normally. Unfortunately, I don't have the C code available, only the input parameters for the function.
Best regards
The array definition is wrong. In ctypes
, the array indices need to be reversed to index the array the way C does. For example, the equivalent of char buf[x][y]
in Python with ctypes
is buf = (c_char * y * x)()
. Note that the bounds are reversed. Otherwise, your definition was correct.
Note that using c_char
will return text characters for array values. If you want integers, use c_int8
. I'll use the latter below.
Example:
from ctypes import *
import numpy as np
A,B = 10,20
ARRAY = c_int8 * B * A # build as B,A
class INSTRUCT(Structure):
_fields_=[("size",c_int32),
("num",c_int32),
("buf1",ARRAY),
("buf2",ARRAY),
("buf3",ARRAY)]
i = INSTRUCT()
i.buf1[9][19] = 1 # access indices as A,B
print(np.ctypeslib.as_array(i.buf1))
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]] # 1 in correct location
Your example of accessing used INSTRUCT()
which creates a new, zeroed object each time. Create a single instance and pass it to a function like so:
dlllib = CDLL("some.dll")
somefunction = dlllib.some_function
somefunction.argtypes = [POINTER(INSTRUCT)]
i = INSTRUCT() # make an instance
somefunction(byref(i)) # byref() passes address of a ctypes object.