I've been trying to convert my pytorch model into coreML format, However one of the layers is currently not supported replication_pad2d. Therefore I was trying to implement it using the register operator decorator @register_torch_op
to reimplement the layer for coremltools.converters, However I'm struggling to understand the input types to be able to implement the function currently. I got this, which is an implementation roughly translated from pytorch but it's not working
from coremltools.converters.mil import Builder as mb
from coremltools.converters.mil import register_torch_op
from coremltools.converters.mil.frontend.torch.ops import _get_inputs
@register_torch_op
def replication_pad2d(context, node):
inputs = _get_inputs(context, node)
x = inputs[0]
a = len(x)
L_list, R_list = [], []
U_list, D_list = [], []
for i in range(a):#i:0, 1
l = x[:, :, :, (a-i):(a-i+1)]
L_list.append(l)
r = x[:, :, :, (i-a-1):(i-a)]
R_list.append(r)
L_list.append(x)
x = mb.concat(L_list+R_list[::-1], axis=3, name=node.name)
for i in range(a):
u = x[:, :, (a-i):(a-i+1), :]
U_list.append(u)
d = x[:, :, (i-a-1):(i-a), :]
D_list.append(d)
U_list.append(x)
x = mb.concat(U_list+D_list[::-1], axis=3, name=node.name)
context.add(x)
but getting the following error
<ipython-input-12-cf14ed84cb93> in replication_pad2d(context, node)
59 inputs = _get_inputs(context, node)
60 x = inputs[0]
---> 61 a = len(x)
62 L_list, R_list = [], []
63 U_list, D_list = [], []
TypeError: object of type 'Var' has no len()
would be great if someone could help me understand this better especially input type node and context
I think the you can use the existing padding layer as:
from coremltools.converters.mil import Builder as mb
from coremltools.converters.mil import register_torch_op
from coremltools.converters.mil.frontend.torch.ops import _get_inputs
@register_torch_op(torch_alias=["replication_pad2d"])
def HackedReplication_pad2d(context, node):
inputs = _get_inputs(context, node)
x = inputs[0]
pad = inputs[1].val
x_pad = mb.pad(x=x, pad=[pad[2], pad[3], pad[0], pad[1]], mode='replicate')
context.add(x_pad, node.name)
The documentation of the padding operation is not that great, so ordering of padding parameters is a guessing game.