I have a dataframe like
import pandas as pd
import numpy as np
df = pd.DataFrame({"Col1": ['A', np.nan, 'B', 'B', 'C'],
"Col2": ['A', 'B', 'B', 'A', 'C'],
"Col3": ['A', 'B', 'C', 'A', 'C']})
I want to get the unique combinations across columns for each row and create a new column with those values, excluding the missing values.
The code I have right now to do this is
def handle_missing(s):
return np.unique(s[s.notnull()])
def unique_across_rows(data):
unique_vals = data.apply(handle_missing, axis = 1)
# numpy unique sorts the values automatically
merged_vals = unique_vals.apply(lambda x: x[0] if len(x) == 1 else '_'.join(x))
return merged_vals
df['Combos'] = unique_across_rows(df)
This returns the expected output:
Col1 Col2 Col3 Combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C
It seems to me that there should be a more vectorized approach that exists within Pandas to do this: how could I do that?
You can try a simple list comprehension which might be more efficient for larger dataframes:
df['combos'] = ['_'.join(sorted(k for k in set(v) if pd.notnull(k))) for v in df.values]
Or you can wrap the above list comprehension in a more readable function:
def combos():
for v in df.values:
unique = set(filter(pd.notnull, v))
yield '_'.join(sorted(unique))
df['combos'] = list(combos())
Col1 Col2 Col3 combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C