TLDR: How to implement this function?
public static <T, R> Function<T, R> cachedRecursive(final BiFunction<T, Function<T,R>, R> bifunc) {
}
I need to somehow extract the second argument from the BiFunction so I can return a proper result for the function.
This project is for learning purposes, although I'm stuck with the last part of my task.
First part of the task is to create a Cache class extended from the LinkedHashMap, and this is my Implementation:
public class Cache<K,V> extends LinkedHashMap<K, V> {
private static int MaxSize;
public Cache (int maxSize) {
super(maxSize,1f,false);
MaxSize = maxSize;
}
public Cache () {
super();
}
public int getMaximalCacheSize () {
return MaxSize;
}
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > MaxSize;
}
}
As for the second part, it is to create a class for which the function definitions will be added:
public class FunctionCache {
private static class Pair<T, U> {
private T stored_t;
private U stored_u;
public Pair(T t, U u) {
stored_t = t;
stored_u = u;
}
public boolean equals(Object t) {
if (t == this) {
return true;
}
return t == stored_t;
}
public int hashCode () {
return stored_t.hashCode();
}
public T get_first() {
return stored_t;
}
public U get_second() {
return stored_u;
}
}
private final static int DEFAULT_CACHE_SIZE = 10000;
public static <T, R> Function<T, R> cached(final Function<T, R> func, int maximalCacheSize) {
Cache<T, R> cache = new Cache<T,R>(maximalCacheSize);
return input -> cache.computeIfAbsent(input, func);
}
public static <T, R> Function<T, R> cached(final Function<T, R> func) {
Cache<T, R> cache = new Cache<T,R>(DEFAULT_CACHE_SIZE);
return input -> cache.computeIfAbsent(input, func);
}
public static <T, U, R> BiFunction<T, U, R> cached(BiFunction<T, U, R> bifunc, int maximalCacheSize) {
Cache<T, R> cache = new Cache<T, R>(maximalCacheSize);
return (t, u) -> {
Pair<T,U> pairKey = new Pair<T,U>(t,u);
Function<Pair<T,U>, R> something = input -> {
return bifunc.apply(input.get_first(), input.get_second());
};
if (!cache.containsKey(pairKey.get_first())) {
R result = something.apply(pairKey);
cache.put(pairKey.get_first(), result);
return result;
} else {
return cache.get(pairKey.get_first());
}
};
}
public static <T, U, R> BiFunction<T, U, R> cached(BiFunction<T, U, R> bifunc) {
Cache<T, R> cache = new Cache<T, R>(DEFAULT_CACHE_SIZE);
return (t, u) -> {
Pair<T,U> pairKey = new Pair<T,U>(t,u);
Function<Pair<T,U>, R> something = input -> {
return bifunc.apply(input.get_first(), input.get_second());
};
if (!cache.containsKey(pairKey.get_first())) {
R result = something.apply(pairKey);
cache.put(pairKey.get_first(), result);
return result;
} else {
return cache.get(pairKey.get_first());
}
};
}
public static <T, R> Function<T, R> cachedRecursive(final BiFunction<T, Function<T,R>, R> bifunc) {
}
}
This is my problem:
public static <T, R> Function<T, R> cachedRecursive(final BiFunction<T, Function<T,R>, R> bifunc) {
}
I have absolutely no idea how to implement the cachedRecursive function, the previous functions are working with a simple fibonacci test perfectly, However the goal of this task is to implement the cachedRecursive function that takes a BiFunction with the first argument as the input and the second argument a function. Just to complete the code, this is the main class I used to test:
public class cachedFunction extends FunctionCache {
public static void main(String[] args) {
@SuppressWarnings({ "rawtypes", "unchecked" })
BiFunction<BigInteger, BiFunction, BigInteger> fibHelper = cached((n, f) -> {
if (n.compareTo(BigInteger.TWO) <= 0) return BigInteger.ONE;
return ((BigInteger) (f.apply(n.subtract(BigInteger.ONE), f)))
.add((BigInteger)f.apply(n.subtract(BigInteger.TWO), f));
}, 50000);
Function<BigInteger, BigInteger> fib = cached((n) -> fibHelper.apply(n,fibHelper));
System.out.println(fib.apply(BigInteger.valueOf(1000L)));
}
}
There are many drawbacks and mistakes in your code:
static
size variables shared across different cache instances (therefore breaking it);equals
/hashCode
contract implementation;_
-containing lower-cased names, etc).If you don't mind, I simplify it:
final class Functions {
private Functions() {
}
// memoize a simple "unknown" function -- simply delegates to a private encapsulated method
static <T, R> Function<T, R> memoize(final Function<? super T, ? extends R> f, final int maxSize) {
return createCacheFunction(f, maxSize);
}
// memoize a recursive function
// note that the bi-function can be converted to an unary function and vice versa
static <T, R> Function<T, R> memoize(final BiFunction<? super T, ? super Function<? super T, ? extends R>, ? extends R> f, final int maxSize) {
final Function<UnaryR<T, Function<T, R>>, R> memoizedF = memoize(unaryR -> f.apply(unaryR.t, unaryR.r), maxSize);
return new Function<T, R>() {
@Override
public R apply(final T t) {
// this is the "magic"
return memoizedF.apply(new UnaryR<>(t, this));
}
};
}
private static <T, R> Function<T, R> createCacheFunction(final Function<? super T, ? extends R> f, final int maxSize) {
final Map<T, R> cache = new LinkedHashMap<T, R>(maxSize, 1F, false) {
@Override
protected boolean removeEldestEntry(final Map.Entry eldest) {
return size() > maxSize;
}
};
return t -> cache.computeIfAbsent(t, f);
}
// these annotations generate proper `equals` and `hashCode`, and a to-string implementation to simplify debugging
@EqualsAndHashCode
@ToString
private static final class UnaryR<T, R> {
@EqualsAndHashCode.Include
private final T t;
@EqualsAndHashCode.Exclude
private final R r;
private UnaryR(final T t, final R r) {
this.t = t;
this.r = r;
}
}
}
And the test that tests both results and the memoization contract ("no recalculation, if memoized"):
public final class FunctionsTest {
@Test
public void testMemoizeRecursive() {
final BiFunction<BigInteger, Function<? super BigInteger, ? extends BigInteger>, BigInteger> fib = (n, f) -> n.compareTo(BigInteger.valueOf(2)) <= 0 ? BigInteger.ONE : f.apply(n.subtract(BigInteger.ONE)).add(f.apply(n.subtract(BigInteger.valueOf(2))));
@SuppressWarnings("unchecked")
final BiFunction<BigInteger, Function<? super BigInteger, ? extends BigInteger>, BigInteger> mockedFib = Mockito.mock(BiFunction.class, AdditionalAnswers.delegatesTo(fib));
final Function<BigInteger, BigInteger> memoizedFib = Functions.memoize(mockedFib, 1000);
final BigInteger memoizedResult = memoizedFib.apply(BigInteger.valueOf(120));
Mockito.verify(mockedFib, Mockito.times(120))
.apply(Matchers.any(), Matchers.any());
Assertions.assertEquals("5358359254990966640871840", memoizedResult.toString());
Assertions.assertEquals(memoizedResult, memoizedFib.apply(BigInteger.valueOf(120)));
Mockito.verifyNoMoreInteractions(mockedFib);
}
}