I have a dataset for banknotes wavelet data of genuine and forged banknotes with 2 features which are:
I run on this dataset K-means to identify 2 clusters of the data which are basically genuine and forged banknotes.
Now I have 3 questions:
My code:
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.patches as patches
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.patches as patches
data = pd.read_csv('Banknote-authentication-dataset-all.csv')
V1 = data['V1']
V2 = data['V2']
bn_class = data['Class']
V1_min = np.min(V1)
V1_max = np.max(V1)
V2_min = np.min(V2)
V2_max = np.max(V2)
normed_V1 = (V1 - V1_min)/(V1_max - V1_min)
normed_V2 = (V2 - V2_min)/(V2_max - V2_min)
V1_mean = normed_V1.mean()
V2_mean = normed_V2.mean()
V1_std_dev = np.std(normed_V1)
V2_std_dev = np.std(normed_V2)
ellipse = patches.Ellipse([V1_mean, V2_mean], V1_std_dev*2, V2_std_dev*2, alpha=0.4)
V1_V2 = np.column_stack((normed_V1, normed_V2))
km_res = KMeans(n_clusters=2).fit(V1_V2)
clusters = km_res.cluster_centers_
plt.xlabel('Variance of Wavelet Transformed image')
plt.ylabel('Skewness of Wavelet Transformed image')
scatter = plt.scatter(normed_V1,normed_V2, s=10, c=bn_class, cmap='coolwarm')
#plt.scatter(V1_std_dev, V2_std_dev,s=400, Alpha=0.5)
plt.scatter(V1_mean, V2_mean, s=400, Alpha=0.8, c='lightblue')
plt.scatter(clusters[:,0], clusters[:,1],s=3000,c='orange', Alpha=0.8)
unique = list(set(bn_class))
plt.text(1.1, 0, 'Kmeans cluster centers', bbox=dict(facecolor='orange'))
plt.text(1.1, 0.11, 'Arithmetic Mean', bbox=dict(facecolor='lightblue'))
plt.text(1.1, 0.33, 'Class 1 - Genuine Notes',color='white', bbox=dict(facecolor='blue'))
plt.text(1.1, 0.22, 'Class 2 - Forged Notes', bbox=dict(facecolor='red'))
plt.savefig('figure.png',bbox_inches='tight')
plt.show()
Appendix image for better visibility
You can do this easily by using fit_predict
instead of fit
, or calling predict
on your training data after fitting it.
Here's a working example:
kM = KMeans(...).fit_predict(V1_V2)
labels = kM.labels_
clusterCount = np.bincount(labels)
clusterCount
will now hold your information for how many points are in each cluster. You can just as easily do this with fit
then predict
, but this should be more efficient:
kM = KMeans(...).fit(V1_V2)
labels = kM.predict(V1_V2)
clusterCount = np.bincount(labels)
kM.labels_
or the output of kM.predict()
as a coloring index.labels = kM.predict(V1_V2)
plt.scatter(normed_V1, normed_V2, s=10, c=labels, cmap='coolwarm') # instead of c=bn_class
predict
.predictedClass = KMeans.predict(newDataPoint)
Where a cluster is assigned the value of the class which it has the majority of. Or even a percentage chance.