Recently in my homework, I was assinged to solve the following problem:
Given a matrix of order nxn of zeros and ones, find the number of paths from [0,0] to [n-1,n-1] that go only through zeros (they are not necessarily disjoint) where you could only walk down or to the right, never up or left. Return a matrix of the same order where the [i,j] entry is the number of paths in the original matrix that go through [i,j], the solution has to be recursive.
My solution in python:
def find_zero_paths(M):
n,m = len(M),len(M[0])
dict = {}
for i in range(n):
for j in range(m):
M_top,M_bot = blocks(M,i,j)
X,Y = find_num_paths(M_top),find_num_paths(M_bot)
dict[(i,j)] = X*Y
L = [[dict[(i,j)] for j in range(m)] for i in range(n)]
return L[0][0],L
def blocks(M,k,l):
n,m = len(M),len(M[0])
assert k<n and l<m
M_top = [[M[i][j] for i in range(k+1)] for j in range(l+1)]
M_bot = [[M[i][j] for i in range(k,n)] for j in range(l,m)]
return [M_top,M_bot]
def find_num_paths(M):
dict = {(1, 1): 1}
X = find_num_mem(M, dict)
return X
def find_num_mem(M,dict):
n, m = len(M), len(M[0])
if M[n-1][m-1] != 0:
return 0
elif (n,m) in dict:
return dict[(n,m)]
elif n == 1 and m > 1:
new_M = [M[0][:m-1]]
X = find_num_mem(new_M,dict)
dict[(n,m-1)] = X
return X
elif m == 1 and n>1:
new_M = M[:n-1]
X = find_num_mem(new_M, dict)
dict[(n-1,m)] = X
return X
new_M1 = M[:n-1]
new_M2 = [M[i][:m-1] for i in range(n)]
X,Y = find_num_mem(new_M1, dict),find_num_mem(new_M2, dict)
dict[(n-1,m)],dict[(n,m-1)] = X,Y
return X+Y
My code is based on the idea that the number of paths that go through [i,j] in the original matrix is equal to the product of the number of paths from [0,0] to [i,j] and the number of paths from [i,j] to [n-1,n-1]. Another idea is that the number of paths from [0,0] to [i,j] is the sum of the number of paths from [0,0] to [i-1,j] and from [0,0] to [i,j-1]. Hence I decided to use a dictionary whose keys are matricies of the form [[M[i][j] for j in range(k)] for i in range(l)] or [[M[i][j] for j in range(k+1,n)] for i in range(l+1,n)] for some 0<=k,l<=n-1 where M is the original matrix and whose values are the number of paths from the top of the matrix to the bottom. After analizing the complexity of my code I arrived at the conclusion that it is O(n^6).
Now, my instructor said this code is exponential (for find_zero_paths), however, I disagree. The recursion tree (for find_num_paths) size is bounded by the number of submatrices of the form above which is O(n^2). Also, each time we add a new matrix to the dictionary we do it in polynomial time (only slicing lists), SO... the total complexity is polynomial (poly*poly = poly). Also, the function 'blocks' runs in polynomial time, and hence 'find_zero_paths' runs in polynomial time (2 lists of polynomial-size times a function which runs in polynomial time) so all in all the code runs in polynomial time.
My question: Is the code polynomial and my O(n^6) bound is wrong or is it exponential and I am missing something?
There is a lot to unpack here:
Before we start, as quick note. Please don't use dict as a variable name. It hurts ^^. Dict is a reserved keyword for a dictionary constructor in python. It is a bad practice to overwrite it with your variable.
First, your approach of counting M_top * M_bottom is good, if you were to compute only one cell in the matrix. In the way you go about it, you are unnecessarily computing some blocks over and over again - that is why I pondered about the recursion, I would use dynamic programming for this one. Once from the start to end, once from end to start, then I would go and compute the products and be done with it. No need for O(n^6) of separate computations. Sine you have to use recursion, I would recommend caching the partial results and reusing them wherever possible.
Second, the root of the issue and the cause of your invisible-ish exponent. It is hidden in the find_num_mem function. Say you compute the last element in the matrix - the result[N][N] field and let us consider the simplest case, where the matrix is full of zeroes so every possible path exists.
Now how to go about it: You will quickly notice that some of the branches are being duplicated over and over. Cache the results.