I have a long list of events that are in a pandas dataframe with the event start and end dates for each event. How can I find the "nearest" event in each city & venue combination using pandas.groupby()
?
Nearest event could be an event in the past, if no new upcoming events. i.e latest event in the dataframe in this case, which happened to be in the past. If there are multiple upcoming events, the one closest in the future will be considered as nearest event.
I tried groupby.agg("max")
as below but that will give the event that is farthest in the future always:
dfp.groupby(['CITY', 'VENUE'], as_index=False).agg({"EVENT_START" : "max", "EVENT_END": "max"})
Looking for a way to get the event that is nearest in the future in time (and if no future events, closest in the past).
Sample data:
EVENT_START,EVENT_END,Event Description,City,Venue
2/5/2016,3/12/2016,event 1,Chicago,Art Institute of Chicago
11/2/2014,12/2/2014,event 2,Los Angelos,Party Haus
1/25/2018,1/31/2018,event 3,Long Beach,Precious Lamb
8/26/2018,8/31/2018,event 4,West Columbia,New Brookland Tavern
11/20/2017,12/17/2017,event 5,Paris,Orsay Museum
6/26/2018,7/9/2018,event 6,Lahaina,Bamboo Fresh
4/3/2010,5/2/2010,event 7,Mitchell,The Corn Palace
9/21/2015,10/18/2015,event 8,San Diego,San Diego Zoo
1/4/2014,1/15/2014,event 9,Portland,Doug Fir Lounge
9/21/2019,9/26/2019,event 10,St. Louis,Krispy Kreme
3/15/2015,2/13/2018,event 11,Corvallis,The Beanery
9/23/2005,10/2/2005,event 12,San Jose,Winchester Mystery House
12/11/2019,12/14/2019,event 13,Chicago,Art Institute of Chicago
6/1/2013,6/26/2013,event 14,Los Angelos,Party Haus
7/10/2020,9/4/2020,event 15,Long Beach,Precious Lamb
10/18/2020,11/26/2020,event 16,West Columbia,New Brookland Tavern
5/14/2004,5/16/2004,event 17,Paris,Orsay Museum
11/16/2020,11/20/2020,event 18,Lahaina,Bamboo Fresh
7/19/2020,10/22/2020,event 19,Mitchell,The Corn Palace
11/1/2017,11/30/2017,event 20,San Diego,San Diego Zoo
7/31/2015,8/1/2015,event 21,Portland,Doug Fir Lounge
10/12/2012,10/20/2012,event 22,St. Louis,Krispy Kreme
2/28/2003,3/13/2003,event 23,Corvallis,The Beanery
9/16/2019,9/20/2019,event 24,San Jose,Winchester Mystery House
3/1/2022,4/1/2022,event 25,Chicago,Art Institute of Chicago
2/19/2009,2/25/2009,event 26,Los Angelos,Party Haus
4/16/2015,5/8/2015,event 27,Long Beach,Precious Lamb
9/7/2016,9/11/2016,event 28,West Columbia,New Brookland Tavern
8/4/2001,8/26/2001,event 29,Paris,Orsay Museum
4/27/2017,6/11/2017,event 30,Lahaina,Bamboo Fresh
5/21/2011,6/19/2011,event 31,Mitchell,The Corn Palace
6/3/2020,8/10/2020,event 32,San Diego,San Diego Zoo
10/29/2012,11/15/2012,event 33,Portland,Doug Fir Lounge
9/1/2027,10/15/2027,event 34,St. Louis,Krispy Kreme
6/23/2017,6/25/2017,event 35,Corvallis,The Beanery
4/25/2007,5/26/2007,event 36,San Jose,Winchester Mystery House
5/30/2003,7/1/2003,event 37,Chicago,Art Institute of Chicago
3/14/2008,4/12/2008,event 38,Los Angelos,Party Haus
5/29/2017,7/27/2017,event 39,Long Beach,Precious Lamb
1/31/2015,3/7/2015,event 40,West Columbia,New Brookland Tavern
4/1/2017,4/21/2017,event 41,Paris,Orsay Museum
12/29/2003,1/31/2004,event 42,Lahaina,Bamboo Fresh
7/3/2021,7/17/2021,event 43,Mitchell,The Corn Palace
9/1/2004,4/30/2005,event 44,San Diego,San Diego Zoo
10/14/2006,10/27/2006,event 45,Portland,Doug Fir Lounge
7/18/2017,7/19/2017,event 46,St. Louis,Krispy Kreme
6/1/2006,6/1/2006,event 47,Corvallis,The Beanery
10/1/2012,11/4/2012,event 48,San Jose,Winchester Mystery House
9/5/2011,9/19/2011,event 49,Chicago,Art Institute of Chicago
5/28/2020,6/2/2020,event 50,Los Angelos,Party Haus
3/1/2023,4/1/2023,event 51,Chicago,Art Institute of Chicago
The result should be:
3/1/2022 4/1/2022 event 25 Chicago Art Institute of Chicago
5/28/2020 6/2/2020 event 50 Los Angelos Party Haus
7/10/2020 9/4/2020 event 15 Long Beach Precious Lamb
10/18/2020 11/26/2020 event 16 West Columbia New Brookland Tavern
11/20/2017 12/17/2017 event 5 Paris Orsay Museum
11/16/2020 11/20/2020 event 18 Lahaina Bamboo Fresh
7/3/2021 7/17/2021 event 43 Mitchell The Corn Palace
6/3/2020 8/10/2020 event 32 San Diego San Diego Zoo
7/31/2015 8/1/2015 event 21 Portland Doug Fir Lounge
9/1/2027 10/15/2027 event 34 St. Louis Krispy Kreme
6/23/2017 6/25/2017 event 35 Corvallis The Beanery
9/16/2019 9/20/2019 event 24 San Jose Winchester Mystery House
# split past events and future events
cond = df['EVENT_START'] > datetime.now()
df_furture = df[cond]
df_past = df[~cond]
# keep the nearest furture
dfn_furture = df_furture.sort_values(['City', 'Venue', 'EVENT_START'])\
.drop_duplicates(['City', 'Venue'], keep='first')
# merge one closest furture event for every city and the past events
dfn = pd.concat([dfn_furture, df_past])
df_result = dfn.sort_values(['City', 'Venue', 'EVENT_START'])\
.drop_duplicates(['City', 'Venue'], keep='last').sort_index()
result:
EVENT_START EVENT_END Event Description City \
4 2017-11-20 2017-12-17 event 5 Paris
14 2020-07-10 2020-09-04 event 15 Long Beach
15 2020-10-18 2020-11-26 event 16 West Columbia
17 2020-11-16 2020-11-20 event 18 Lahaina
20 2015-07-31 2015-08-01 event 21 Portland
23 2019-09-16 2019-09-20 event 24 San Jose
24 2022-03-01 2022-04-01 event 25 Chicago
31 2020-06-03 2020-08-10 event 32 San Diego
33 2027-09-01 2027-10-15 event 34 St. Louis
34 2017-06-23 2017-06-25 event 35 Corvallis
42 2021-07-03 2021-07-17 event 43 Mitchell
49 2020-05-28 2020-06-02 event 50 Los Angelos
Venue
4 Orsay Museum
14 Precious Lamb
15 New Brookland Tavern
17 Bamboo Fresh
20 Doug Fir Lounge
23 Winchester Mystery House
24 Art Institute of Chicago
31 San Diego Zoo
33 Krispy Kreme
34 The Beanery
42 The Corn Palace
49 Party Haus