Search code examples
pythonpython-3.xmultiprocessingpython-multiprocessing

How to sweep many hyperparameter sets in parallel in Python?


Note that I have to sweep through more argument sets than available CPUs, so I'm not sure if Python will automatically schedule the use of the CPUs depending on their availability or what.

Here is what I tried, but I get an error about the arguments:

import random
import multiprocessing
from train_nodes import run
import itertools

envs = ["AntBulletEnv-v0", "HalfCheetahBulletEnv-vo", "HopperBulletEnv-v0", "ReacherBulletEnv-v0",
        "Walker2DBulletEnv-v0", "InvertedDoublePendulumBulletEnv-v0"]
algs = ["PPO", "A2C"]
seeds = [random.randint(0, 200), random.randint(200, 400), random.randint(400, 600), random.randint(600, 800), random.randint(800, 1000)]

args = list(itertools.product(*[envs, algs, seeds]))

num_cpus = multiprocessing.cpu_count()

with multiprocessing.Pool(num_cpus) as processing_pool:
    processing_pool.map(run, args)

run takes in 3 arguments: env, alg, and seed. For some reason here it doesn't register all 3.


Solution

  • The function in multiprocessing.Pool.map expects one argument. One way to adapt your code is to write a small wrapper function that takes env, alg, and seed as one argument, separates them, and passes them to run.

    Another option is to use multiprocessing.Pool.starmap, which allows multiple arguments to be passed to the function.

    import random
    import multiprocessing
    import itertools
    
    envs = [
        "AntBulletEnv-v0",
        "HalfCheetahBulletEnv-vo",
        "HopperBulletEnv-v0",
        "ReacherBulletEnv-v0",
        "Walker2DBulletEnv-v0",
        "InvertedDoublePendulumBulletEnv-v0",
    ]
    algs = ["PPO", "A2C"]
    seeds = [
        random.randint(0, 200),
        random.randint(200, 400),
        random.randint(400, 600),
        random.randint(600, 800),
        random.randint(800, 1000),
    ]
    
    args = list(itertools.product(*[envs, algs, seeds]))
    
    num_cpus = multiprocessing.cpu_count()
    
    # sample implementation or `run`
    def run(env, alg, seed):
        # do stuff
        return random.randint(0, 200)
    
    def wrapper(env_alg_seed):
        env, alg, seed = env_alg_seed
        return run(env=env, alg=alg, seed=seed)
    
    # use a wrapper
    with multiprocessing.Pool(num_cpus) as processing_pool:
        # accumulate results in a dictionary
        results = processing_pool.map(wrapper, args)
    
    # use starmap and call `run` directly
    with multiprocessing.Pool(num_cpus) as processing_pool:
        results = processing_pool.starmap(run, args)