Search code examples
pythonoderunge-kutta

Validation of tolerance in Runge Kutta Fehlberg


I've written a code to solve a system of ODEs using Runge Kutta Fehlberg method:

import numpy as np
import matplotlib.pyplot as plt 
import numba
import time

start_time = time.clock()

@numba.jit()
def S1(x,u):
    alpha = 0.01
    C1 = 0.00096*alpha
    C2 = 865688 * alpha**2
    C3 = 0.71488 * alpha**(3/2)
    C4 = 1715.2 * alpha**(3/2)
    C5 = 0.356
    C6 = 3.18373* 10**8 *alpha
    C7 = 262.9 * 10**20 * alpha**0.5
    C8 = 63* 10**25 * alpha**0.5
    Gam0 = 121
    v0 = 10**(-5)
    b = 2* 10**(-4)
    x0 = 0.00045
    B0 = 0.0005
    BY,nB,neL,neR=u
    B= B0/(b*(2*np.pi)**0.5) * np.exp(-((x-x0)**2)/(2 * b**2))
    v= v0/(b*(2*np.pi)**0.5)* np.exp(-((x-x0)**2)/(2 * b**2))
    nT= neR-neL/2 + (3/8) * nB
    dn= (neR**2-neL**2) * 0.5
    u1= (-C1-C2 * nT)* (BY/(10e+20))**2 * x**3/2
    u2= (C3*B+C4* (dn**2))*v*(BY/(10e+20))**2
    u3= (Gam0 * (1-x)/(x**0.5))*(neR-neL)
    dneL= -(1/4) * (u1+u2) + u3/2
    dneR= u1+u2-u3
    dnB= (3/2)*(u1+u2)
    dBY= (1/(x**0.5))*(-C5-C6*nT)*BY - BY/x + (C7*B+C8* dn**2) * (v/(x**1.5))
    return np.array([dBY,dnB,dneL,dneR])


@numba.jit()
def rkf( f, a, b, x0, tol, hmax, hmin ):

    a2  =   2.500000000000000e-01  #  1/4
    a3  =   3.750000000000000e-01  #  3/8
    a4  =   9.230769230769231e-01  #  12/13
    a5  =   1.000000000000000e+00  #  1
    a6  =   5.000000000000000e-01  #  1/2

    b21 =   2.500000000000000e-01  #  1/4
    b31 =   9.375000000000000e-02  #  3/32
    b32 =   2.812500000000000e-01  #  9/32
    b41 =   8.793809740555303e-01  #  1932/2197
    b42 =  -3.277196176604461e+00  # -7200/2197
    b43 =   3.320892125625853e+00  #  7296/2197
    b51 =   2.032407407407407e+00  #  439/216
    b52 =  -8.000000000000000e+00  # -8
    b53 =   7.173489278752436e+00  #  3680/513
    b54 =  -2.058966861598441e-01  # -845/4104
    b61 =  -2.962962962962963e-01  # -8/27
    b62 =   2.000000000000000e+00  #  2
    b63 =  -1.381676413255361e+00  # -3544/2565
    b64 =   4.529727095516569e-01  #  1859/4104
    b65 =  -2.750000000000000e-01  # -11/40

    r1  =   2.777777777777778e-03  #  1/360
    r3  =  -2.994152046783626e-02  # -128/4275
    r4  =  -2.919989367357789e-02  # -2197/75240
    r5  =   2.000000000000000e-02  #  1/50
    r6  =   3.636363636363636e-02  #  2/55

    c1  =   1.157407407407407e-01  #  25/216
    c3  =   5.489278752436647e-01  #  1408/2565
    c4  =   5.353313840155945e-01  #  2197/4104
    c5  =  -2.000000000000000e-01  # -1/5

    t = a
    x = np.array(x0)
    h = hmax

    T = np.array( [t] )
    X = np.array( [x] )
    
    while t < b:

        if t + h > b:
            h = b - t

        k1 = h * f(t, x)
        k2 = h * f(t + a2 * h, x + b21 * k1 )
        k3 = h * f(t + a3 * h, x + b31 * k1 + b32 * k2)
        k4 = h * f(t + a4 * h, x + b41 * k1 + b42 * k2 + b43 * k3)
        k5 = h * f(t + a5 * h, x + b51 * k1 + b52 * k2 + b53 * k3 + b54 * k4)
        k6 = h * f(t + a6 * h, x + b61 * k1 + b62 * k2 + b63 * k3 + b64 * k4 + b65 * k5)
        # print(t)
        r = abs( r1 * k1 + r3 * k3 + r4 * k4 + r5 * k5 + r6 * k6 ) / h
        if len( np.shape( r ) ) > 0:
            r = max( r )
        if r <= tol:
            t = t + h
            x = x + c1 * k1 + c3 * k3 + c4 * k4 + c5 * k5
            T = np.append( T, t )
            X = np.append( X, [x], 0 )

        h = h * min( max( 0.84 * ( tol / r )**0.25, 0.1 ), 4.0 )
        
        if h > hmax:
            h = hmax
        elif h < hmin:
            raise RuntimeError("Error: Could not converge to the required tolerance %e with minimum stepsize  %e." % (tol,hmin))
            break

    return (X, T)
    
S1u0=np.array([0,0,0,0])
np.seterr(all='ignore')

u,t =rkf( f=S1, a=1e-4, b=1, x0=S1u0, tol=1e+10, hmax=1e-1, hmin=1e-40)

print("Execution time:",time.clock() - start_time, "seconds")
BY,nB,neL,neR = u.T
print(BY.shape)
plt.plot(t,BY)
plt.xscale('log')
plt.yscale('log')
plt.show()

Which works very fast, and returns the desired result: enter image description here

( I have solved the exact same ODEs in Maple, and got the same result). But my question is regarding the tolerance. When I set the tolerance to 1e+10 , code works really fast (it integrates ODEs with only few points) and in contrary with lower tolerance, well, it takes much much longer (even for tolerance of 1e+4). My first question is why I'm getting the right answer with a tolerance like 1e+10 ? My second question is how can I calculate relative and absolute error? And third, is it possible to make this code more efficient?


Solution

  • You get that many points in the integration because the components have different scales, the first at about 1e+20, the other three at about 1e-10. One gets better results with a per-component step-size constructed from absolute and relative error tolerances.

    def rkf( f, a, b, x0, atol, rtol, hmax, hmin ):
        ...
        while t < b:
    
            ...
    
            r = abs( r1 * k1 + r3 * k3 + r4 * k4 + r5 * k5 + r6 * k6 ) / h
            r = r / (atol+rtol*(abs(x)+abs(k1)))
            if len( np.shape( r ) ) > 0:
                r = max( r )
            if r <= 1:
                t = t + h
                x = x + c1 * k1 + c3 * k3 + c4 * k4 + c5 * k5
                T = np.append( T, t )
                X = np.append( X, [x], 0 )
    
            h = h * min( max( 0.94 * ( 1 / r )**0.25, 0.1 ), 4.0 )
            
            if h > hmax:
                h = hmax
            elif h < hmin or t==t-h:
                raise RuntimeError("Error: Could not converge to the required tolerance %e with minimum stepsize  %e. t=%g h=%e" % (tol,hmin,t,h))
                break
    
    

    Different reasonable tolerances result in a reduced number of points, such as

    atol=1e+4, rtol=1e-2  ==>  93 points
    atol=1e+0, rtol=1e-4  ==> 125 points
    atol=1e+10, rtol=1e-6 ==> 245 points
    

    The number of points is largely insensitive to the atol value. Perhaps that needs to be set per component, setting atol=np.array([1e+20,1e-10,1e-10,1e-10])*1e-4 has a consistent effect when changing the last factor.