I have the following data df_matrix
, level_1
and level_2
are the multi-index:
|level_1|level_2|value_1|value_2|value_3|
|-------|-------|-------|-------|-------|
|a |w |1 |2 |3 |
| |y |4 |5 |6 |
| |y |4 |5 |6 |
| |z |7 |8 |9 |
|b |w |11 |21 |31 |
| |x |41 |51 |61 |
| |y |41 |51 |61 |
| |z |71 |81 |91 |
and df_column
, id
is the index:
id | value |
---|---|
value_1 | 0.1 |
value_2 | 0.2 |
value_3 | 0.3 |
Is there a smart way to do the dot product on every sub-frame without explicitly looping?
I do it like this, but wonder if there is a cuter implicit way, thanks, John
import pandas as pd
# set up matrix data
df_matrix = pd.DataFrame([(1, 2, 3),
(4, 5, 6),
(4, 5, 6),
(7, 8, 9),
(11, 21, 31),
(41, 51, 61),
(41, 51, 61),
(71, 81, 91)],
index=[['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['w', 'x', 'y', 'z', 'w', 'x', 'y', 'z']],
columns=('value_1','value_2','value_3'))
# BTW can I do this rename in constructor?
df_matrix.index.rename(['level_1','level_2'], inplace=True)
# set up column data
df_column = pd.DataFrame([('value_1', 0.1), ('value_2', 0.2), ('value_3',0.3)],
columns=('level_2', 'factor'))
df_column.set_index('level_2', inplace=True)
# loop each sub frame and do matrix multiplication
df_result = pd.DataFrame()
for l1, new_df in df_matrix.groupby(level=0):
new_df.reset_index(level=0, inplace=True, drop=True)
df_column.rename(columns={df_column.columns[0] : l1}, inplace=True)
df_scores = new_df.dot(df_column)
df_result = pd.concat([df_result, df_scores], axis=1)
# result:
df_result.T
#level_2 w x y z
#a 1.4 3.2 3.2 5.0
#b 14.6 32.6 32.6 50.6
You can just use the dot function directly; it will be aligned on the common index; after that it is a straightforward unstack, droplevel and rename.
(
df_matrix.dot(df_column)
.unstack()
.droplevel(0, axis=1)
.rename_axis(index=None, columns=None)
)
w x y z
a 1.4 3.2 3.2 5.0
b 14.6 32.6 32.6 50.6