I am trying to run a service that uses simple transformers Roberta model to do classification. the inferencing script/function itself is working as expected when tested. when i include that with fast api its shutting down the server.
uvicorn==0.11.8
fastapi==0.61.1
simpletransformers==0.51.6
cmd : uvicorn --host 0.0.0.0 --port 5000 src.main:app
@app.get("/article_classify")
def classification(text:str):
"""function to classify article using a deep learning model.
Returns:
[type]: [description]
"""
_,_,result = inference(text)
return result
error :
INFO: Started server process [8262]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit)
INFO: 127.0.0.1:36454 - "GET / HTTP/1.1" 200 OK
INFO: 127.0.0.1:36454 - "GET /favicon.ico HTTP/1.1" 404 Not Found
INFO: 127.0.0.1:36454 - "GET /docs HTTP/1.1" 200 OK
INFO: 127.0.0.1:36454 - "GET /openapi.json HTTP/1.1" 200 OK
before
100%|████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 17.85it/s]
INFO: Shutting down
INFO: Finished server process [8262]
inferencing script :
model_name = "checkpoint-3380-epoch-20"
model = MultiLabelClassificationModel("roberta","src/outputs/"+model_name)
def inference(input_text,model_name="checkpoint-3380-epoch-20"):
"""Function to run inverence on one sample text"""
#model = MultiLabelClassificationModel("roberta","src/outputs/"+model_name)
all_tags =[]
if isinstance(input_text,str):
print("before")
result ,output = model.predict([input_text])
print(result)
tags=[]
for idx,each in enumerate(result[0]):
if each==1:
tags.append(classes[idx])
all_tags.append(tags)
elif isinstance(input_text,list):
result ,output = model.predict(input_text)
tags=[]
for res in result :
for idx,each in enumerate(res):
if each==1:
tags.append(classes[idx])
all_tags.append(tags)
return result,output,all_tags
update: tried with flask and the service is working but when adding uvicorn on top of flask its getting stuck in a loop of restart.
I have solved this issue by starting a process pool using multiprocessing explicitly.
from multiprocessing import set_start_method
from multiprocessing import Process, Manager
try:
set_start_method('spawn')
except RuntimeError:
pass
@app.get("/article_classify")
def classification(text:str):
"""function to classify article using a deep learning model.
Returns:
[type]: [description]
"""
manager = Manager()
return_result = manager.dict()
# as the inference is failing
p = Process(target = inference,args=(text,return_result,))
p.start()
p.join()
# print(return_result)
result = return_result['all_tags']
return result