I have a steganography code that hiding image inside another image.
I inject a watermark into the my image through this code.
The principle is very simple.
I used the source_image
and watermark_images
for insert the watermark.
This will randomly distribute the watermark_images
.
First, scatter x and y of the watermark image using random seeds.
And then, convert source_image
to frequency area using Fast Fourier Transform.
Finally, combine the watermark_layer
with the frequency area of the source_image
.
This encoding process works perfectly well. However, there is a problem in the process of decoding.
Decoding code is collects pixels scattered by random seeds in one place on the same principle.
This is Result of decoing:
this problem, if i try to encoded image to save(cv2.imwrite) and recalled(cv2.imread), the decoding doesn't work.
If I use the encoded object as it is, there is no problem. Is the pixel damaged during the saving and recall process?
this is my full code:
import cv2 as cv
import numpy as np
import random
import time
class Watermark:
def __init__(self):
self.watermark_image = cv.imread('../Watermark/google_logo.png')
self.result_image_path = '../Watermark/result.jpg'
self.random_seed = 2021
self.alpha = 5
def encoding(self, image_path):
# Code Start
start_time = time.time()
# Read Image
source_image = cv.imread(image_path)
source_height, source_width, _ = source_image.shape
watermark_height, watermark_width, _ = self.watermark_image.shape
print('source height : ', source_height, ', source_width : ', source_width)
print('watermark height : ', watermark_height, ', watermark width : ', watermark_width)
# Convert image to frequency area with Fast Fourier Transform (image -> frequency)
source_frequency = np.fft.fft2(source_image)
# Get random seed
y_random_indices, x_random_indices = list(range(source_height)), list(range(source_width))
random.seed(self.random_seed)
random.shuffle(x_random_indices)
random.shuffle(y_random_indices)
print('y random seed : ', y_random_indices)
print('x random seed : ', x_random_indices)
# Injection watermark
watermark_layer = np.zeros(source_image.shape, dtype=np.uint8)
for y in range(watermark_height):
for x in range(watermark_width):
watermark_layer[y_random_indices[y], x_random_indices[x]] = self.watermark_image[y, x]
# Encoding frequency area + watermark layer
result_frequency = source_frequency + self.alpha * watermark_layer
# Apply Inverse Fast Fourier Transform (frequency -> image)
result_image = np.fft.ifft2(result_frequency)
result_image = np.real(result_image)
result_image = result_image.astype(np.uint8)
# Show elapsed time
end_time = time.time()
print('Encoding elapsed time : ', end_time - start_time, '\n')
# Visualization
cv.imshow('source_image', source_image)
cv.imshow('watermark', self.watermark_image)
cv.imshow('watermark_layer', watermark_layer)
cv.imshow('result_image', result_image)
# Save and Close
cv.imwrite(self.result_image_path, result_image)
cv.waitKey(0)
cv.destroyAllWindows()
return result_image
def decoding(self, source_image_path, encoded_image):
# Code Start
start_time = time.time()
# Read Image
source_image = cv.imread(source_image_path)
source_height, source_width, _ = source_image.shape
print('original_height : ', source_height)
print('original_width : ', source_width)
encoded_height, encoded_width, _ = encoded_image.shape
# Convert image to frequency area with Fast Fourier Transform (image -> frequency)
source_frequency = np.fft.fft2(source_image)
encoded_frequency = np.fft.fft2(encoded_image)
# Convert frequency area to image (frequency -> image)
watermark_layer = (source_frequency - encoded_frequency) / self.alpha
watermark_layer = np.real(watermark_layer).astype(np.uint8)
# Get random seed
y_random_indices, x_random_indices = [list(range(encoded_height)), list(range(encoded_width))]
random.seed(self.random_seed)
random.shuffle(x_random_indices)
random.shuffle(y_random_indices)
print('y random seed : ', y_random_indices)
print('x random seed : ', x_random_indices)
# Restore watermark
result_image = np.zeros(watermark_layer.shape, dtype=np.uint8)
for y in range(encoded_height):
for x in range(encoded_width):
result_image[y, x] = watermark_layer[y_random_indices[y], x_random_indices[x]]
# Show elapsed time
end_time = time.time()
print('Encoding elapsed time : ', end_time - start_time, '\n')
# Visualization
cv.imshow('original image', source_image)
cv.imshow('target image', encoded_image)
cv.imshow('watermark layer', watermark_layer)
cv.imshow('result image', result_image)
cv.waitKey(0)
cv.destroyAllWindows()
if __name__ == '__main__':
source_path = '../Watermark/jennie.jpg'
# good work
protected_image = Watermark().encoding(source_path)
Watermark().decoding(source_path, protected_image)
# doesn't work
result_path = '../Watermark/result.jpg'
result_image = cv.imread(result_path)
Watermark().decoding(source_path, result_image)
Please give me some advice.
Carlos Melus have a good point.
Your code is not suitable for processing jpg images.
if you use png format, it will work out well.