I am stuck with an apparently simple problem. I have to revolve of 360° a 2D curve around an axis, to obtain a 3D plot. Say, I want to do it with this sine function:
z = sin(r);
theta = 0:pi/20:2*pi;
xx = bsxfun(@times,r',cos(theta));
yy = bsxfun(@times,r',sin(theta));
zz = repmat(z',1,length(theta));
surf(xx,yy,zz)
axis equal
I now want to visualize the numerical values of the Z plane, stored in a matrix. I would normally do it this way:
ch=get(gca,'children')
X=get(ch,'Xdata')
Y=get(ch,'Ydata')
Z=get(ch,'Zdata')
If I visualize Z with
imagesc(Z)
I don't obtain the actual values of Z of the plot, but the "un-revolved" projection. I suspect that this is related to the way I generate the curve, and from the fact I don't have a function of the type
zz = f(xx,yy)
Is there any way I can obtain the grid values of xx and yy, as well as the values of zz at each gridpoint?
Thank you for your help.
Instead of bsxfun
you can use meshgrid:
% The two parameters needed for the parametric equation
h = linspace(0,2) ;
th = 0:pi/20:2*pi ;
[R,T] = meshgrid(h,th) ;
% The parametric equation
% f(x) Rotation along Z
% ↓ ↓
X = sin(R) .* cos(T) ;
Y = sin(R) .* sin(T) ;
% Z = h
Z = R ;
surf(X,Y,Z,'EdgeColor',"none")
xlabel('X')
ylabel('Y')
zlabel('Z')
Which produce:
And if you want to extract the contour on the X plane (X = 0) you can use contour
:
contour(Y,Z,X,[0,0])
Which produce: