I have following dataframes:
accumulated_results_df
|-- company_id: string (nullable = true)
|-- max_dd: string (nullable = true)
|-- min_dd: string (nullable = true)
|-- count: string (nullable = true)
|-- mean: string (nullable = true)
computed_df
|-- company_id: string (nullable = true)
|-- min_dd: date (nullable = true)
|-- max_dd: date (nullable = true)
|-- mean: double (nullable = true)
|-- count: long (nullable = false)
Trying to do a join using spark-sql as below
val resultDf = accumulated_results_df.as("a").join(computed_df.as("c"),
( $"a.company_id" === $"c.company_id" ) && ( $"c.min_dd" > $"a.max_dd" ), "left")
Giving error as :
org.apache.spark.sql.AnalysisException: Reference 'company_id' is ambiguous, could be: a.company_id, c.company_id.;
What am i doing wrong here and How to fix this ?
Should work using the col function to reference correctly the alias dataframes and columns
val resultDf = (accumulated_results_df.as("a")
.join(
computed_df.as("c"),
(col("a.company_id") === col("c.company_id")) && (col("c.min_dd") > col("a.max_dd")),
"left"
)