I have a non-linear survival model which I have coded using the mgcv
package. I can produce a regular plot, but I would like to be able to do code a ggplot2
instead. How do I go about this?
Here is my code:
df <- structure(list(SurvYear =c(3L, 2L, 3L, 6L, 8L, 3L, 5L, 2L, 9L,
8L, 1L, 7L, 1L, 4L, 6L, 8L, 2L, 5L, 1L, 1L, 7L, 1L, 5L, 3L, 2L,
1L, 9L, 1L, 5L, 2L, 2L, 1L, 2L, 3L, 4L, 8L, 7L, 2L, 2L, 6L, 9L,
7L, 3L, 9L, 6L, 8L, 2L, 8L, 2L, 1L, 1L, 6L, 5L, 3L, 3L, 7L, 2L,
4L, 5L, 2L, 3L, 7L, 4L, 1L, 2L, 2L, 3L, 5L, 1L, 9L, 2L, 2L, 3L,
9L, 6L, 2L, 2L, 4L, 3L, 1L, 9L, 7L, 3L, 1L, 2L, 1L, 6L, 3L, 1L,
5L, 6L, 5L, 6L, 4L, 2L, 1L, 3L, 1L, 1L, 3L, 4L, 3L, 8L, 9L, 7L,
6L, 3L, 5L, 2L, 7L, 9L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 9L, 1L,
4L, 8L, 1L, 8L, 1L, 1L, 8L, 5L, 2L, 9L, 4L, 8L, 4L, 9L, 2L, 2L,
3L, 2L, 9L, 3L, 2L, 1L, 3L, 2L, 1L, 9L, 9L, 2L, 1L, 1L, 1L, 2L,
9L, 1L, 5L, 1L, 6L, 9L, 3L, 2L, 2L, 5L, 7L, 4L, 2L, 7L, 2L, 4L,
5L, 3L, 3L, 9L, 2L, 6L, 1L, 3L, 4L, 5L, 9L, 8L, 1L, 2L, 8L, 2L,
9L, 1L, 7L, 3L, 3L, 1L, 6L, 3L, 4L, 9L, 1L, 3L, 4L, 4L, 2L, 7L,
2L, 3L, 1L, 1L, 7L, 2L, 1L, 1L, 2L, 1L, 9L, 1L, 2L, 9L, 1L, 1L,
2L, 3L, 7L, 3L, 1L, 1L, 2L, 5L, 4L, 6L, 7L, 1L, 9L, 2L, 1L, 8L,
1L, 2L, 1L, 4L, 2L, 3L, 3L, 9L, 9L, 9L, 4L, 1L, 1L, 4L, 9L, 3L,
1L, 1L, 3L, 3L, 4L, 1L, 1L, 1L, 1L, 6L, 9L, 1L, 1L, 8L, 1L, 3L,
3L, 8L, 3L, 5L, 1L, 2L, 1L, 2L, 4L, 3L, 1L, 6L, 1L, 4L, 8L, 1L,
3L, 2L, 2L, 3L, 6L, 2L, 1L, 1L, 1L, 9L, 3L, 1L, 7L, 3L, 9L, 1L,
9L, 5L, 4L), Gender = c(1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L,
1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L,
0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L,
0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L,
1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L,
1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L,
0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L,
1L, 1L), Age = c(63L, 66L, 34L, 43L, 63L, 21L, 24L, 44L, 52L,
59L, 27L, 32L, 30L, 20L, 56L, 55L, 35L, 26L, 53L, 43L, 39L, 19L,
34L, 28L, 19L, 24L, 50L, 22L, 58L, 24L, 50L, 25L, 37L, 30L, 51L,
69L, 23L, 49L, 22L, 46L, 58L, 31L, 23L, 53L, 59L, 25L, 38L, 44L,
34L, 49L, 19L, 39L, 24L, 51L, 29L, 27L, 48L, 77L, 22L, 43L, 59L,
49L, 60L, 51L, 49L, 47L, 50L, 44L, 41L, 44L, 50L, 42L, 46L, 54L,
35L, 21L, 26L, 26L, 40L, 21L, 48L, 49L, 20L, 20L, 32L, 37L, 22L,
36L, 46L, 28L, 39L, 35L, 51L, 39L, 49L, 57L, 46L, 18L, 52L, 47L,
27L, 32L, 23L, 43L, 42L, 57L, 22L, 40L, 19L, 58L, 71L, 55L, 42L,
20L, 51L, 21L, 20L, 61L, 36L, 54L, 19L, 35L, 38L, 41L, 34L, 22L,
41L, 42L, 56L, 50L, 53L, 53L, 48L, 22L, 59L, 27L, 28L, 32L, 37L,
68L, 24L, 26L, 61L, 21L, 20L, 20L, 50L, 62L, 61L, 29L, 18L, 40L,
67L, 43L, 25L, 43L, 22L, 56L, 47L, 41L, 40L, 43L, 27L, 37L, 61L,
35L, 23L, 54L, 38L, 38L, 39L, 45L, 49L, 63L, 49L, 44L, 44L, 23L,
37L, 58L, 61L, 25L, 18L, 59L, 25L, 51L, 40L, 27L, 42L, 22L, 38L,
22L, 45L, 33L, 32L, 36L, 53L, 52L, 19L, 45L, 53L, 27L, 65L, 25L,
53L, 57L, 29L, 23L, 62L, 36L, 56L, 59L, 41L, 61L, 44L, 24L, 21L,
38L, 29L, 55L, 33L, 18L, 21L, 19L, 65L, 24L, 59L, 34L, 25L, 45L,
48L, 18L, 41L, 61L, 32L, 37L, 21L, 20L, 57L, 25L, 65L, 50L, 61L,
32L, 27L, 19L, 50L, 63L, 19L, 45L, 20L, 36L, 20L, 19L, 53L, 39L,
50L, 20L, 24L, 57L, 28L, 21L, 39L, 49L, 21L, 20L, 39L, 20L, 44L,
19L, 39L, 53L, 29L, 60L, 43L, 21L, 23L, 30L, 42L, 42L, 51L, 35L,
50L, 51L, 56L, 52L, 22L, 36L, 56L, 28L, 57L, 20L, 47L, 48L, 65L,
71L, 21L, 70L, 23L, 63L), Highest_Educationmx = c(4L, 5L, 3L,
2L, 3L, 2L, 3L, 1L, 3L, 1L, 7L, 3L, 2L, 3L, 3L, 2L, 6L, 2L, 3L,
6L, 3L, 2L, 2L, 7L, 2L, 1L, 2L, 3L, 6L, 3L, 5L, 3L, 5L, 6L, 2L,
1L, 5L, 2L, 5L, 1L, 1L, 3L, 2L, 3L, 1L, 7L, 5L, 4L, 7L, 3L, 1L,
1L, 6L, 3L, 3L, 2L, 4L, 6L, 5L, 4L, 2L, 6L, 1L, 3L, 4L, 2L, 1L,
5L, 5L, 3L, 1L, 5L, 3L, 3L, 1L, 4L, 2L, 3L, 5L, 3L, 1L, 4L, 2L,
1L, 2L, 7L, 2L, 5L, 3L, 2L, 6L, 1L, 1L, 3L, 4L, 1L, 5L, 1L, 3L,
4L, 2L, 7L, 2L, 4L, 4L, 7L, 4L, 6L, 3L, 1L, 2L, 1L, 5L, 5L, 1L,
5L, 2L, 7L, 3L, 4L, 2L, 4L, 2L, 4L, 2L, 2L, 4L, 1L, 2L, 1L, 2L,
6L, 1L, 2L, 5L, 2L, 2L, 5L, 1L, 6L, 5L, 2L, 1L, 2L, 1L, 1L, 3L,
2L, 4L, 3L, 2L, 3L, 1L, 5L, 5L, 7L, 1L, 3L, 3L, 2L, 1L, 3L, 4L,
5L, 1L, 1L, 3L, 3L, 3L, 5L, 3L, 6L, 4L, 3L, 1L, 3L, 5L, 7L, 1L,
3L, 4L, 5L, 3L, 3L, 1L, 1L, 1L, 7L, 3L, 1L, 4L, 3L, 3L, 5L, 1L,
4L, 5L, 4L, 2L, 5L, 3L, 1L, 1L, 5L, 4L, 7L, 5L, 2L, 2L, 5L, 3L,
1L, 1L, 2L, 3L, 5L, 3L, 7L, 5L, 1L, 5L, 3L, 1L, 1L, 1L, 1L, 7L,
5L, 7L, 3L, 1L, 5L, 7L, 6L, 3L, 7L, 2L, 2L, 3L, 1L, 2L, 1L, 5L,
5L, 2L, 4L, 1L, 1L, 2L, 1L, 4L, 7L, 3L, 2L, 5L, 3L, 2L, 4L, 2L,
1L, 7L, 5L, 2L, 2L, 2L, 3L, 4L, 1L, 2L, 5L, 2L, 3L, 3L, 1L, 3L,
2L, 3L, 5L, 1L, 3L, 1L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 1L, 3L, 3L,
1L, 3L, 6L, 3L, 4L, 3L, 3L, 5L, 3L), Censor = c(0L, 1L, 1L, 0L,
0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L,
1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L,
1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L,
0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L,
1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L,
1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L,
1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L)), class = "data.frame",
row.names = c(NA, -300L))
Here is the script:
library(mgcv)
library(ggplot2)
#Run the model
Model1 <- gam(SurvYear~
(Gender)+
s(Age, k=50)+
s(Highest_Educationmx, k=7),
weights=Censor, data=df, gamma=1.5, family=cox.ph())
summary(Model1)
#Build a perspective chart
vis.gam(Model1, view=c("Age","Highest_Educationmx"),
plot.type="persp", color="gray", se=-1, theta=45, phi=25,
xlab="Age", ylab= "Highest Education",
ticktype="detailed", zlim=c(-5.00, 2.00))
#Plot individual predictors using plot command from mgcv
plot(Model1, all.terms=T, rug=T, residuals=F, se=T, shade=T, seWithMean=T)
#Plot individual predictors using ggplot instead of plot command from mgcv
#UNSURE HOW DO TO THIS
I'm biased (I wrote it) but you can use the gratia package for this.
You can use the draw()
function as a replacement for plot.gam()
, and if you want total control, just use evaluate_smooth()
to produce a tidy representation of the smooth which is then easily plotted using ggplot2.