I wrote the following code for downloading the dataset and apply EDA functions on the DataFrame
url = "https://query1.finance.yahoo.com/v7/finance/download/RELIANCE.BO?period1=1577110559&period2=1608732959&interval=1d&events=history&includeAdjustedClose=true"
r = requests.get(url)
open(stock+'.csv','wb').write(r.content)
ril = pd.read_csv(r'RELIANCE.csv',date_parser='Date')
ril.head(10)
Here I want to retrieve the Close
column via the apply column for practising with the df.apply()
function
def close(stock):
print(stock.iloc[:,6])
ril.apply(close)
But the code gave an IndexingError
as
IndexingError Traceback (most recent call last)
<ipython-input-21-9fad7d447930> in <module>()
----> 1 asp.apply(close)
7 frames
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _has_valid_tuple(self, key)
698 for i, k in enumerate(key):
699 if i >= self.ndim:
--> 700 raise IndexingError("Too many indexers")
701 try:
702 self._validate_key(k, i)
IndexingError: Too many indexers
Can it be done with the df.apply()
function?
df = pd.read_csv(r'RELIANCE.csv',date_parser='Date')
close1 = df['Close'] #standard way of assessing the column
close2 = df.apply(lambda x: x.iloc[4] , axis=1) #apply function row-wise: take 1
close3 = df.apply(lambda x: x[4] , axis=1) # ... take 2
close4 = df.apply(lambda x: x['Close'], axis=1) # ... take 3
print( np.allclose(close1, close2, equal_nan=True) ) # verify
...
For references: pandas.DataFrame.iloc and pandas.DataFrame.apply
Basically what happened in your case is that you iterated over your dataframe using pd.apply
as well as by indexing df.iloc[:,...]
. Note the axis=1
in order to apply the function row-wise