I am drawing a surface plot and would like to "manually" draw a contour line using plotly
. In the code below I:
contoureR
package# Load packages
library(plotly) # for interactive visualizations
library(contoureR) # for calculating contour coordinates
# Simulate the data for plotting
x <- y <- seq(from = 0, to = 100, by = 1)
z1 <- outer(X = x, Y = y, FUN = function(x, y) x^0.2 * y^0.3) # data for surface plot
# Obtain coordinates of contour for z = 5
z_level <- 5
r <- contourLines(x = x, y = y, z = z1, levels = z_level)
plot_ly(
type = "surface",
x = x,
y = y,
z = z1,
) %>%
add_trace(
type = "scatter3d",
x = r[[1]]$x,
y = r[[1]]$y,
z = z_level
)
I am aware that these are all approximations, so I also tried to pass the x
and y
coordinates produced by contourLines()
to the formula used to create z1
above and use the corresponding values to plot my contour line (instead of using z_level = 5
, but I still do not obtain the desired result:
plot_ly(
x = x,
y = y,
z = z1,
type = "surface"
) %>%
add_trace(
type = "scatter3d",
x = r[[1]]$x,
y = r[[1]]$y,
z = r[[1]]$x^0.2*r[[1]]$y^0.3
)
I alo know that plotly
enables me to draw specific contour lines (see my question and answer here: Add a permanent contour line to a surface plot in R plotly). However, I would like to draw my contour line myself (after getting their coordinates) so it can "pull" by cursor and show me the tooltip info whenever I hover over it. Ideally, if there was a way to obtain the contour lines coordinates as computed by plotly
itself, that would be great.
Thank you for your help.
I was able to find two solutions to this problem.
z1
matrixThe first solution was given me by @nirgrahamuk and it consists in transposing the z1
matrix:
library(plotly) # for interactive visualizations
# Simulate the data for plotting
x <- y <- seq(from = 0, to = 100, by = 1)
z1 <- outer(X = x, Y = y, FUN = function(x, y) x^0.2 * y^0.3) # data for surface plot
# Obtain coordinates of contour for z = 5
z_level <- 6
r <- contourLines(x = x,
y = y,
z = z1,
levels = z_level)
plot_ly(
type = "surface",
z = t(z1), # *** WE TRANSPOSE THE MATRIX HERE! ***
) %>%
add_trace(
type = "scatter3d",
x = r[[1]]$x,
y = r[[1]]$y,
z = z_level
)
isoband
packageThe second solution is to compute the contour lines coordinates with the isoband::isolines()
function:
library(plotly) # for interactive visualizations
library(isoband) # for find contour lines coordinates
# Simulate the data for plotting
x <- y <- seq(from = 0, to = 100, by = 1)
z1 <- outer(X = x, Y = y, FUN = function(x, y) x^0.2 * y^0.3) # data for surface plot
# Obtain coordinates of contour for z = 5
z_level <- 6
r <- isolines(x = x, # *** WE USE THE isolines() FUNCTION HERE ***
y = y,
z = z1,
levels = z_level)
plot_ly(
type = "surface",
z = z1,
) %>%
add_trace(
type = "scatter3d",
x = r[[1]]$x,
y = r[[1]]$y,
z = z_level
)