I am making a seaborn heat map and I want to specify a discrete colormap with these ranges:
under 40 = dark green
40 - 70 = light green
70 - 130 = white
130 - 165 = light red
165 and over = dark red
I made a colorbar with the right boundaries:
fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)
cmap = mpl.colors.ListedColormap(['darkolivegreen', 'yellowgreen', 'white', 'lightcoral','darkred'])
#cmap.set_over('0.25')
#cmap.set_under('0.75')
bounds = [0, 40, 70, 130,165,310]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb2 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
#boundaries=[0] + bounds + [13],
extend='both',
ticks=bounds,
spacing='proportional',
orientation='horizontal')
cb2.set_label('Discrete intervals, some other units')
fig.show()
My issue now is how do I define this colorbar with the boundaries as my new colormap for my seaborn heatmap?
I tried this, but the boundaries are not present and the colormap is adjusted evenly instead of using the specific boundaries.
ax = sns.heatmap(selected,cmap=cmap)
plt.ylabel('Patient')
plt.xlabel('Gene')
#ax.set_yticks(np.arange(0,61,1))
plt.show()
How do I get the correct colormap based off my new colorbar I defined?
You can try using plt.colorbar
to plot the color bar after plotting the heatmap
fig, ax = plt.subplots(figsize=(6, 9))
fig.subplots_adjust(bottom=0.5)
# define the color map
cmap = mpl.colors.ListedColormap(['darkolivegreen', 'yellowgreen', 'white', 'lightcoral','darkred'])
bounds = [0, 40, 70, 130,165,310]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
# plot heatmap with `imshow`
cb = ax.imshow(selected,cmap=cmap, norm=norm)
# plot colorbar
cb2 = plt.colorbar(cb, #boundaries=[0] + bounds + [13],
extend='both',
ticks=bounds,
spacing='proportional',
orientation='horizontal')
cb2.set_label('Discrete intervals, some other units')
fig.show()
Output: