Let's say I have a stage controller and I want to write a method to move the stage. I want to be able to have the method either return after the stage has physically completed the stage move, or has started the stage move. For any kind of external control of hardware, I typically write async methods with a Task return. This way, users can await on the completion of the task, e.g. await the stage to finish it's move, or just call the move method, and await the returned task at a later point if necessary.
Is this the right approach for controller external hardware? Should these kind of methods be written synchronously with with separate methods used to determine operation completed? People I talk to seem to have an issue with using async methods; mostly because they feel it is too indeterminate for them for hardware control.
Is this the right approach for controller external hardware? Should these kind of methods be written synchronously with with separate methods used to determine operation completed?
I hesitate to use async
for any kind of system that is driven by external forces. One that I've seen a lot is people try to use tasks to represent "the user pressed this button". And your example reminds me of that, but with external hardware in place of a person.
The problem with these kinds of approaches is twofold. First, it restricts you to a very linear logic flow. Second, it doesn't easily provide results other than success/fail. What if the hardware does something other than what was instructed? How easy is it to do logic that tries to do A but then times out waiting for state A' to be reached so it tries to do B?
Bear in mind that tasks must be completed. While it's possible to handle this using something like task cancellation (or hardware-specific exceptions), that can considerably complicate the logic code. Particularly when you consider timeouts, retries, and fallback logic.
So, I generally avoid using tasks for modeling that kind of domain. Something like an observable may be a better fit, or even just a Channel of state updates. Both of those permit the hardware to "push" its state and allows the logic code to respond appropriately, usually with a state machine of its own.