Calculating and imputing the mean using dask-ml works fine when changing all the columns that are np.nan
:
imputer = impute.SimpleImputer(strategy='mean')
data = [[100, 2], [np.nan, np.nan], [70, 7]]
df = pd.DataFrame(data, columns = ['Weight', 'Age'])
x3 = imputer.fit_transform(df)
print(x3)
Weight Age
0 100.0 2.0
1 85.0 4.5
2 70.0 7.0
But what if I need to leave Age
untouched? Is it possible to specify what columns to impute?
You should be able to specify colums by
df.Weight = imputer.fit_transform(df.Weight)
or by indexing columns df.loc["Weight"]