I've tried to do a loop for a t-test between different columns, with one in particular and different ones. I would like to do a multiple t.test and insert it in a table to summarize the p-values and show with which columns I did the t.test.
I tried this,
var1<- c('empfte','empft_rate','wage_st','wage_min','pmeal','hrsopen','bonus')
for (i in var1){
result=t.test(eval(parse(text = paste0(i,"~state"))),data)
pvalue<- print(i)
print(result$p.value)
}
But that's not esthetic with "print".
Moreover, if it is possible to put the table in Latex format.
You could use lapply ("list-apply") to evaluate each variable against a single variable (in this case, "empfte" vs all others), e.g.
library(tidyverse)
var1 <- tribble(~'empfte',~'empft_rate',~'wage_st',~'wage_min',~'pmeal',~'hrsopen',~'bonus',
3, 3, 0.7, 22, 2.0, 8, 5,
4, 1, 0.7, 22, 2.5, 9, 5.1,
2, 1, 0.6, 22, 2.1, 2, 5.2,
3, 6, 0.8, 22, 2.9, 5, 5.3,
3, 6, 0.8, 22, 2.9, 5, 5.4,
3, 5, 0.8, 22, 2.9, 5, 5.8)
t.test_func <- function(name){
test <- t.test(x = var1$empfte, y = name)
return(test$p.value)
}
list_of_results <- lapply(var1, t.test_func)
table <- t(data.frame("empfte vs" = list_of_results))
colnames(table) <- c("P-Value")
table
P-Value
empfte.vs.empfte 1.000000000000000
empfte.vs.empft_rate 0.526440549147148
empfte.vs.wage_st 0.000280122578855
empfte.vs.wage_min 0.000000008779076
empfte.vs.pmeal 0.181259032114088
empfte.vs.hrsopen 0.047201925878887
empfte.vs.bonus 0.000087211443709
library(xtable)
xtable(t(data.frame("empfte vs" = list_of_results)))
% latex table generated in R 4.0.3 by xtable 1.8-4 package
% Tue Dec 22 11:44:20 2020
\begin{table}[ht]
\centering
\begin{tabular}{rr}
\hline
& x \\
\hline
empfte.vs.empfte & 1.00 \\
empfte.vs.empft\_rate & 0.53 \\
empfte.vs.wage\_st & 0.00 \\
empfte.vs.wage\_min & 0.00 \\
empfte.vs.pmeal & 0.18 \\
empfte.vs.hrsopen & 0.05 \\
empfte.vs.bonus & 0.00 \\
\hline
\end{tabular}
\end{table}
You should be aware that these values do not correct for multiple testing (e.g. Bonferroni Correction) and an ANOVA is likely a more suitable statistical test.