I'm trying to prove that injective functions are left invertible in Coq. I've reached a point in my proof where my goal is an "exists" proposition. I want to define a function that uses terms from proof scope (types and functions I've intro'ed before) and then show the function to the "exists" goal. Here's what I wrote so far:
(* function composition *)
Definition fun_comp {A B C: Type} (f:A -> B) (g:B -> C) : A -> C :=
fun a: A => g (f a).
Notation "g .o f" := (fun_comp f g) (at level 70).
Definition nonempty (A: Type) := exists a: A, a = a.
(* identity function for any given type *)
Definition fun_id (A: Type) := fun a: A => a.
(* left invertible *)
Definition l_invertible {A B: Type} (f: A -> B) :=
exists fl:B->A, fl .o f = fun_id A.
Definition injective {A B: Type} (f: A -> B) :=
forall a a': A, f a = f a' -> a = a'.
(* is a given element in a function's image? *)
Definition elem_in_fun_image {A B: Type} (b: B) (f: A -> B) :=
exists a: A, f a = b.
Theorem injective_is_l_invertible:
forall (A B: Type) (f: A -> B), nonempty A /\ injective f -> l_invertible f.
Proof.
intros A B f H.
destruct H as [Hnempty Hinj].
unfold l_invertible.
unfold nonempty in Hnempty.
destruct Hnempty as [a0].
(* here would go my function definition and invoking "exists myfun" *)
Here's the function I'm trying to define:
Definition fL (b: B) := if elem_in_fun_image b f
then f a
else a0.
Here's what the proof window looks like:
1 subgoal
A : Type
B : Type
f : A -> B
a0 : A
H : a0 = a0
Hinj : injective f
========================= (1 / 1)
exists fl : B -> A, (fl .o f) = fun_id A
How do I do this? I'm very new to Coq so other comments and pointers are welcome.
This definition cannot be performed in the basic logic. You need to add in a few extra axioms:
(* from Coq.Logic.FunctionalExtensionality *)
functional_extensionality : forall A B (f g : A -> B),
(forall x, f x = g x) -> f = g
(* from Coq.Logic.Classical *)
classic : forall P : Prop, P \/ ~ P
(* from Coq.Logic.ClassicalChoice *)
choice : forall (A B : Type) (R : A->B->Prop),
(forall x : A, exists y : B, R x y) ->
exists f : A->B, (forall x : A, R x (f x)).
The goal is to define a relation R
that characterizes the left inverse that you want to construct. The existentially quantified f
will then be the inverse! You will need the classic
axiom to show the precondition of choice
, and you will need functional extensionality to show the equation that you want. I'll leave it as an exercise to find out what R
needs to be and how to complete the proof.