I am working on an NLP assignment and loaded the GloVe vectors provided by Gensim:
import gensim.downloader
glove_vectors = gensim.downloader.load('glove-twitter-25')
I am trying to get the word embedding for each word in a sentence, but some of them are not in the vocabulary.
What is the best way to deal with it working with the Gensim API?
Thanks!
Load the model:
import gensim.downloader as api
model = api.load("glove-twitter-25") # load glove vectors
# model.most_similar("cat") # show words that similar to word 'cat'
There is a very simple way to find out if the words exist in the model's vocabulary.
result = print('Word exists') if word in model.wv.vocab else print('Word does not exist")
Apart from that, I had used the following logic to create sentence embedding (25 dim) with N tokens:
from __future__ import print_function, division
import os
import re
import sys
import regex
import numpy as np
from functools import partial
from fuzzywuzzy import process
from Levenshtein import ratio as lev_ratio
import gensim
import tempfile
def vocab_check(model, word):
similar_words = model.most_similar(word)
match_ratio = 0.
match_word = ''
for sim_word, sim_score in similar_words:
ratio = lev_ratio(word, sim_word)
if ratio > match_ratio:
match_word = sim_word
if match_word == '':
return similar_words[0][1]
return model.similarity(word, match_word)
def sentence2vector(model, sent, dim=25):
words = sent.split(' ')
emb = [model[w.strip()] for w in words]
weights = [1. if w in model.wv.vocab else vocab_check(model, w) for w in words]
if len(emb) == 0:
sent_vec = np.zeros(dim, dtype=np.float16)
else:
sent_vec = np.dot(weights, emb)
sent_vec = sent_vec.astype("float16")
return sent_vec