I have a 3d array of position vectors p [np.shape(p) yields (Nx, Ny, Nz, 3)] and an array Rn of n rotation matrices [np.shape(R) yields (n, 3, 3)].
I am trying to get an array PR of shape (n, Nx, Ny, Nz, 3) where the i-th (0 < i < n) entry at dimension 0 is the 3d array of position vectors p rotated by the 3x3 rotation matrix at index i of array Rn.
theta = np.arange(0, 2*np.pi, np.pi/50)
phi = np.arange(0, np.pi, np.pi/100)
a = np.arange(100)
b = np.arange(50)
p = np.array(np.meshgrid(a, b, a, indexing="xy"))
p = np.moveaxis(p, 1, 2)
p = np.moveaxis(p, 0, 3)
# np.shape(p) => (100,50,100,3)
Rn = np.array([np.array([np.cos(theta)*np.cos(phi), np.cos(theta)*np.sin(phi), -np.sin(theta)]),
np.array([-np.sin(phi), np.cos(phi), np.zeros(np.shape(phi))]),
np.array([np.cos(phi)*np.sin(theta), np.sin(theta)*np.sin(phi), np.cos(theta)])])
Rn = np.moveaxis(Rn , 1, 2)
Rn = np.moveaxis(Rn , 0, 1)
# np.shape(Rn) => (100, 3, 3)
So far I have attempted the following, unsuccessfully.
PR= np.matmul(Rn, p)
What is the most efficient way to perform this operation? I know how to perform this using For loops, but in the interest of efficiency I have been trying to keep things vectorized within numpy.
Two possible solutions are -
np.einsum("ijkl,nal->nijka", p, Rn, optimize=True)
td = np.moveaxis(np.tensordot(p, Rn, axes=((-1), (-1))), 3, 0)
I will also compare these solutions with other answers in this thread.
p = np.random.rand(10, 20, 30, 3)
Rn = np.random.rand(100, 3, 3)
es = np.einsum("ijkl,nal->nijka", p, Rn, optimize=True)
td = np.moveaxis(np.tensordot(p, Rn, axes=((-1), (-1))), 3, 0)
d = np.squeeze(np.moveaxis(np.dot(Rn, p[..., None]), 1, -2), -1)
out = ((Rn @ p.reshape(-1,3).T)
.reshape(Rn.shape[0],3,-1)
.swapaxes(1,2)
.reshape(-1, *p.shape)
)
print(np.allclose(es, out))
print(np.allclose(td, out))
print(np.allclose(d, out))
All gives True
.
If you try benchmarking their performance,
%timeit np.einsum("ijkl,nal->nijka", p, Rn, optimize=True)
%timeit np.moveaxis(np.tensordot(p, Rn, axes=((-1), (-1))), 3, 0)
%timeit ((Rn @ p.reshape(-1,3).T).reshape(Rn.shape[0],3,-1) .swapaxes(1,2).reshape(-1, *p.shape))
%timeit np.moveaxis(np.squeeze(np.dot(Rn, p[..., None]), -1), 1, -1)
Gives,
3.91 ms ± 129 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.15 ms ± 168 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.45 ms ± 29.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
29.1 ms ± 98.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
For an array of the given size on my system.
einsum
and tensordot
seems to have comparable performance while the @
solution seems the fastest. The dot
solutions seems unreasonably slow though. I am not sure why since I would have imagined it's using @
under the hood.