I am going to learn how to transfer a dynamic Eigen vector to a GPU and get it back. For these purposes, I wrote a test code:
using Vector = Eigen::Matrix<float, Eigen::Dynamic, 1, Eigen::ColMajor>;
Vector vector;
uint64_t size = 6;
vector.resize(size);
for (uint64_t i = 0; i < size; ++i)
vector[i] = i;
uint64_t sizeInBytes = size * sizeof (float) + sizeof (vector);
Vector *vectorCuda;
cudaMalloc((void**)&vectorCuda, sizeInBytes);
cudaMemcpy(vectorCuda, &vector, sizeInBytes, cudaMemcpyKind::cudaMemcpyHostToDevice);
Vector result;
result.resize(size);
cudaMemcpy(&result, vectorCuda, sizeInBytes, cudaMemcpyKind::cudaMemcpyDeviceToHost);
cudaFree(vectorCuda);
std::cout << "result: " << std::endl << result << std::endl;
The output is:
result:
0
1
2
3
4
5
double free or corruption (fasttop)
So I passed the data to GPU and got it back, but I get the SIGABRT error. The error occurs in std::free(ptr):
1 __GI_raise raise.c 50 0x7ffff660b18b
2 __GI_abort abort.c 79 0x7ffff65ea859
3 __libc_message libc_fatal.c 155 0x7ffff66553ee
4 malloc_printerr malloc.c 5347 0x7ffff665d47c
5 _int_free malloc.c 4266 0x7ffff665ede5
6 Eigen::internal::aligned_free Memory.h 177 0x555555564e14
7 Eigen::internal::conditional_aligned_free<true> Memory.h 230 0x55555556601e
8 Eigen::internal::conditional_aligned_delete_auto<float, true> Memory.h 416 0x555555565820
9 Eigen::DenseStorage<float, -1, -1, 1, 0>::~DenseStorage DenseStorage.h 542 0x555555565281
10 Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1>>::~PlainObjectBase PlainObjectBase.h 98 0x5555555650be
11 Eigen::Matrix<float, -1, 1, 0, -1, 1>::~Matrix Matrix.h 178 0x5555555650de
12 main main.cpp 26 0x555555564b42
I thought it was because the destructor is called on an empty object, but when I commented out the line
// cudaMemcpy(&result, vectorCuda, sizeInBytes, cudaMemcpyKind::cudaMemcpyDeviceToHost);
the error is gone.
So how to fix it?
Also I am writing in Cuda quite recently and there may be some bad lines in my code. Therefore, I would be glad if someone more experienced noticed something that could cause future bugs. I would like to store the start and end dynamic Eigen vectors in the stack.
The easiest way to fix this is to turn this into a float* pointer using the Eigen data() function, which returns a raw pointer to the data in your matrix. You can transfer the data to the GPU, work on it there, then copy that data back and store it in a nice Eigen Matrix again.
#include <iostream>
#include <cuda_runtime.h>
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense>
using Vector = Eigen::Matrix<float, Eigen::Dynamic, 1, Eigen::ColMajor>;
int main(){
Vector vector;
uint64_t size = 6;
vector.resize(size);
for (uint64_t i = 0; i < size; ++i)
vector[i] = i;
uint64_t sizeInBytes = size * sizeof (float);
float *raw_vector = vector.data();
float *vectorCuda;
cudaMalloc((void**)&vectorCuda, sizeInBytes);
cudaMemcpy(vectorCuda, raw_vector, sizeInBytes, cudaMemcpyKind::cudaMemcpyHostToDevice);
Vector result;
result.resize(size);
cudaMemcpy(result.data(), vectorCuda, sizeInBytes, cudaMemcpyKind::cudaMemcpyDeviceToHost);
cudaFree(vectorCuda);
std::cout << "result: " << std::endl << result << std::endl;
return 0;
}