I am trying to solve a multiobjective optimization problem with 3 objectives and 2 decision variables using NSGA 2. The pymoo code for NSGA2 algorithm and termination criteria is given below. My pop_size is 100 and n_offspring is 100. The algorithm is iterated over 100 generations. I want to store all 100 values of decision variables considered in each generation for all 100 generations in a dataframe.
NSGA2 implementation in pymoo code:
from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_sampling, get_crossover, get_mutation
algorithm = NSGA2(
pop_size=20,
n_offsprings=10,
sampling=get_sampling("real_random"),
crossover=get_crossover("real_sbx", prob=0.9, eta=15),
mutation=get_mutation("real_pm", prob=0.01,eta=20),
eliminate_duplicates=True
)
from pymoo.factory import get_termination
termination = get_termination("n_gen", 100)
from pymoo.optimize import minimize
res = minimize(MyProblem(),
algorithm,
termination,
seed=1,
save_history=True,
verbose=True)
What I have tried (My reference: stackoverflow question):
import pandas as pd
df2 = pd.DataFrame (algorithm.pop)
df2.head(10)
The result from above code is blank and on passing
print(df2)
I get
Empty DataFrame
Columns: []
Index: []
Glad you intend to use pymoo for your research. You have correctly enabled the save_history
option, which means you can access the algorithm objects.
To have all solutions from the run, you can combine the offsprings (algorithm.off
) from each generation. Don't forget the Population
objects contain Individual
objectives. With the get
method you can get the X
and F
or other values. See the code below.
import pandas as pd
from pymoo.algorithms.nsga2 import NSGA2 from pymoo.factory import get_sampling, get_crossover, get_mutation, ZDT1 from pymoo.factory import get_termination from pymoo.model.population import Population from pymoo.optimize import minimize
problem = ZDT1()
algorithm = NSGA2(
pop_size=20,
n_offsprings=10,
sampling=get_sampling("real_random"),
crossover=get_crossover("real_sbx", prob=0.9, eta=15),
mutation=get_mutation("real_pm", prob=0.01,eta=20),
eliminate_duplicates=True )
termination = get_termination("n_gen", 10)
res = minimize(problem,
algorithm,
termination,
seed=1,
save_history=True,
verbose=True)
all_pop = Population()
for algorithm in res.history:
all_pop = Population.merge(all_pop, algorithm.off)
df = pd.DataFrame(all_pop.get("X"), columns=[f"X{i+1}" for i in range(problem.n_var)])
print(df)
Another way would be to use a callback and fill the data frame each generation. Similar as shown here: https://pymoo.org/interface/callback.html