I am trying to convert this code passing it with pysyft refference
like this :
class SyNet(sy.Module):
def __init__(self,embedding_size, num_numerical_cols, output_size, layers, p ,torch_ref):
super(SyNet, self ).__init__( embedding_size, num_numerical_cols , output_size , layers , p=0.4 ,torch_ref=torch_ref )
self.all_embeddings=self.torch_ref.nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in embedding_size])
self.embedding_dropout=self.torch_ref.nn.Dropout(p)
self.batch_norm_num=self.torch_ref.nn.BatchNorm1d(num_numerical_cols)
all_layers= []
num_categorical_cols = sum((nf for ni, nf in embedding_size))
input_size = num_categorical_cols + num_numerical_cols
for i in layers:
all_layers.append(self.torch_ref.nn.Linear(input_size,i))
all_layers.append(self.torch_ref.nn.ReLU(inplace=True))
all_layers.append(self.torch_ref.nn.BatchNorm1d(i))
all_layers.append(self.torch_ref.nn.Dropout(p))
input_size = i
all_layers.append(self.torch_ref.nn.Linear(layers[-1], output_size))
self.layers = self.torch_ref.nn.Sequential(*all_layers)
def forward(self, x_categorical, x_numerical):
embeddings= []
for i,e in enumerate(self.all_embeddings):
embeddings.append(e(x_categorical[:,i]))
x_numerical = self.batch_norm_num(x_numerical)
x = self.torch_ref.cat([x, x_numerical], 1)
x = self.layers(x)
return x
But when I try to create a instance of the model
model = SyNet( categorical_embedding_sizes, numerical_data.shape[1], 2, [200,100,50], p=0.4 ,torch_ref= th)
I got a TypeError
TypeError: multiple values for argument 'torch_ref'
I tried to change the order of the arguments but i got an error about positional arguments . Can you help me , I am not very experienced in classes and functions (oop)
Thank you in advance !
Looking at PySyft source code for Module
. The constructor of your class parent only takes a single argument: torch_ref
.
You should therefore call the super constructor with:
super(SyNet, self).__init__(torch_ref=torch_ref) # line 3
removing all arguments but torch_ref
from the call.