I ran a LIWC analysis and it gives me the following results (below). I would like to turn the result into a pandas dataframe. If anyone can chip in, that would be wonderful.
Thanks in advance :)
Best, David
resp = requests.post(url, auth=(api_key, api_secret), data=data)
resp1 = resp
print(resp.json())
{'plan_usage': {'call_limit': 1000, 'calls_made': 6, 'calls_remaining': 994, 'percent_used': 0.6, 'start_date': '2020-12-09T03:05:57.779556Z', 'end_date': '2020-12-23T03:05:57.779556Z'}, 'results': [{'response_id': 'd1382f42-5c28-4528-ab2e-81b80ba185e2', 'request_id': 'req-1', 'language': 'en', 'version': 'v1.0.0', 'summary': {'word_count': 57, 'words_per_sentence': 11.4, 'sentence_count': 5, 'six_plus_words': 0.2982456140350877, 'emojis': 0, 'emoticons': 0, 'hashtags': 0, 'urls': 0}, 'liwc': {'scores': {'analytical_thinking': 80.77394876079086, 'authentic': 38.8220872694557, 'clout': 50, 'emotional_tone': 97.58138119866139, 'dictionary_words': 0.8771929824561403, 'categories': {'achievement': 0, 'adjectives': 0.017543859649122806, 'adverbs': 0.03508771929824561, 'affect': 0.05263157894736842, 'affiliation': 0.017543859649122806, 'all_punctuation': 0.10526315789473684, 'anger_words': 0, 'anxiety_words': 0, 'apostrophes': 0, 'articles': 0.12280701754385964, 'assent': 0, 'auxiliary_verbs': 0.14035087719298245, 'biological_processes': 0, 'body': 0, 'causation': 0, 'certainty': 0, 'cognitive_processes': 0.05263157894736842, 'colons': 0, 'commas': 0.017543859649122806, 'comparisons': 0, 'conjunctions': 0.07017543859649122, 'dashes': 0, 'death': 0, 'differentiation': 0, 'discrepancies': 0.017543859649122806, 'drives': 0.03508771929824561, 'exclamations': 0, 'family': 0, 'feel': 0, 'female': 0, 'filler_words': 0, 'focus_future': 0, 'focus_past': 0, 'focus_present': 0.14035087719298245, 'friends': 0.017543859649122806, 'function_words': 0.543859649122807, 'health': 0, 'hear': 0, 'home': 0, 'i': 0.03508771929824561, 'impersonal_pronouns': 0.03508771929824561, 'informal_language': 0, 'ingestion': 0, 'insight': 0, 'interrogatives': 0.017543859649122806, 'leisure': 0.14035087719298245, 'male': 0, 'money': 0, 'motion': 0.05263157894736842, 'negations': 0, 'negative_emotion_words': 0, 'netspeak': 0, 'nonfluencies': 0, 'numbers': 0, 'other_grammar': 0.2807017543859649, 'other_punctuation': 0, 'parentheses': 0, 'perceptual_processes': 0.017543859649122806, 'periods': 0.08771929824561403, 'personal_concerns': 0.14035087719298245, 'personal_pronouns': 0.03508771929824561, 'positive_emotion_words': 0.05263157894736842, 'power': 0, 'prepositions': 0.10526315789473684, 'pronouns': 0.07017543859649122, 'quantifiers': 0.05263157894736842, 'question_marks': 0, 'quotes': 0, 'relativity': 0.17543859649122806, 'religion': 0, 'reward': 0.017543859649122806, 'risk': 0, 'sad_words': 0, 'see': 0.017543859649122806, 'semicolons': 0, 'sexual': 0, 'she_he': 0, 'social': 0.03508771929824561, 'space': 0.10526315789473684, 'swear_words': 0, 'tentative': 0.03508771929824561, 'they': 0, 'time': 0.017543859649122806, 'time_orientation': 0.14035087719298245, 'verbs': 0.19298245614035087, 'we': 0, 'work': 0, 'you': 0}}}, 'sallee': {'counts': {'emotions': {'admiration': 5, 'amusement': 0, 'anger': 0, 'boredom': 0, 'calmness': 0, 'curiosity': 0, 'desire': 0, 'disgust': 0, 'excitement': 0.375, 'fear': 0, 'gratitude': 2, 'joy': 6.375, 'love': 5, 'pain': 0, 'sadness': 0, 'surprise': 0}, 'goodfeel': 13.375, 'ambifeel': 0, 'badfeel': 0, 'emotionality': 13.375, 'sentiment': 13.375, 'non_emotion': None}, 'scores': {'emotions': {'admiration': 0.3333333333333333, 'amusement': 0, 'anger': 0, 'boredom': 0, 'calmness': 0, 'curiosity': 0, 'desire': 0, 'disgust': 0, 'excitement': 0.03614457831325301, 'fear': 0, 'gratitude': 0.16666666666666666, 'joy': 0.3893129770992366, 'love': 0.3333333333333333, 'pain': 0, 'sadness': 0, 'surprise': 0}, 'goodfeel': 0.2015065913370998, 'ambifeel': 0, 'badfeel': 0, 'emotionality': 0.2015065913370998, 'sentiment': 0.6541600137038615, 'non_emotion': 0.7984934086629002}, 'emotion_word_count': 4}}]}
js = resp.json()
df = pd.json_normalize(js['results'][0])
df.columns
Index(['response_id', 'request_id', 'language', 'version',
'summary.word_count', 'summary.words_per_sentence',
'summary.sentence_count', 'summary.six_plus_words', 'summary.emojis',
'summary.emoticons',
...
'sallee.scores.emotions.pain', 'sallee.scores.emotions.sadness',
'sallee.scores.emotions.surprise', 'sallee.scores.goodfeel',
'sallee.scores.ambifeel', 'sallee.scores.badfeel',
'sallee.scores.emotionality', 'sallee.scores.sentiment',
'sallee.scores.non_emotion', 'sallee.emotion_word_count'],
dtype='object', length=150)
df.iloc[0]
response_id d1382f42-5c28-4528-ab2e-81b80ba185e2
request_id req-1
language en
version v1.0.0
summary.word_count 57
...
sallee.scores.badfeel 0
sallee.scores.emotionality 0.202
sallee.scores.sentiment 0.654
sallee.scores.non_emotion 0.798
sallee.emotion_word_count 4
Name: 0, Length: 150, dtype: object