We have a graph that contains both customer and product verticies. For a given product, we want to find out how many customers who signed up before DATE have purchased this product. My query looks something like
g.V('PRODUCT_GUID') // get product vertex
.out('product-customer') // get all customers who ever bought this product
.has('created_on', gte(datetime('2020-11-28T00:33:44.536Z'))) // see if the customer was created after a given date
.count() // count the results
This query is incredibly slow, so I looked at the neptune profiler and saw something odd. Below is the full profiler output. Ignore the elapsed time in the profiler. This was after many attempts at the same query, so the cache is warm. in the wild, it can take 45 seconds or more.
*******************************************************
Neptune Gremlin Profile
*******************************************************
Query String
==================
g.V('PRODUCT_GUID').out('product-customer').has('created_on', gte(datetime('2020-11-28T00:33:44.536Z'))).count()
Original Traversal
==================
[GraphStep(vertex,[PRODUCT_GUID]), VertexStep(OUT,[product-customer],vertex), HasStep([created_on.gte(Sat Nov 28 00:33:44 UTC 2020)]), CountGlobalStep]
Optimized Traversal
===================
Neptune steps:
[
NeptuneCountGlobalStep {
JoinGroupNode {
PatternNode[(?1=<PRODUCT_GUID>, ?5=<product-customer>, ?3, ?6) . project ?1,?3 . IsEdgeIdFilter(?6) .], {estimatedCardinality=30586, expectedTotalOutput=30586, indexTime=0, joinTime=14, numSearches=1, actualTotalOutput=13424}
PatternNode[(?3, <created_on>, ?7, ?) . project ask . CompareFilter(?7 >= Sat Nov 28 00:33:44 UTC 2020^^<DATETIME>) .], {estimatedCardinality=1285574, indexTime=10, joinTime=140, numSearches=13424}
}, annotations={path=[Vertex(?1):GraphStep, Vertex(?3):VertexStep], joinStats=true, optimizationTime=0, maxVarId=8, executionTime=165}
}
]
Physical Pipeline
=================
NeptuneCountGlobalStep
|-- StartOp
|-- JoinGroupOp
|-- SpoolerOp(1000)
|-- DynamicJoinOp(PatternNode[(?1=<PRODUCT_GUID>, ?5=<product-customer>, ?3, ?6) . project ?1,?3 . IsEdgeIdFilter(?6) .], {estimatedCardinality=30586, expectedTotalOutput=30586})
|-- SpoolerOp(1000)
|-- DynamicJoinOp(PatternNode[(?3, <created_on>, ?7, ?) . project ask . CompareFilter(?7 >= Sat Nov 28 00:33:44 UTC 2020^^<DATETIME>) .], {estimatedCardinality=1285574})
Runtime (ms)
============
Query Execution: 164.996
Traversal Metrics
=================
Step Count Traversers Time (ms) % Dur
-------------------------------------------------------------------------------------------------------------
NeptuneCountGlobalStep 1 1 164.919 100.00
>TOTAL - - 164.919 -
Predicates
==========
# of predicates: 131
Results
=======
Count: 1
Output: [22]
Index Operations
================
Query execution:
# of statement index ops: 13425
# of unique statement index ops: 13425
Duplication ratio: 1.0
# of terms materialized: 0
In particular
DynamicJoinOp(PatternNode[(?3, <created_on>, ?7, ?) . project ask . CompareFilter(?7 >= Sat Nov 28 00:33:44 UTC 2020^^) .], {estimatedCardinality=1285574})
This line surprises me. The way I'm reading this is that Neptune is ignoring the verticies coming from ".out('product-customer')" to satisfy the ".has('created_on'...)" requirement, and is instead joining on every single customer vertex that has the created_on attribute.
I would have expected that the cardinality is only the number of customers with an edge from the product, not every single customer.
I'm wondering if there's a way to only run this comparison on the customers coming from the "out('product-customer')" step.
Neptune actually must solve the first pattern,
(?1=<PRODUCT_GUID>, ?5=<product-customer>, ?3, ?6)
before it can solve the second,
(?3, <created_on>, ?7, ?)
Each quad pattern is an indexed lookup bound by at least two fields. So the first lookup uses the SPOG index in Neptune bound by the Subject (the ID) and the Predicate (the edge label). This will return a set of Objects (the vertex IDs for the vertices at the other end of the product-customer edges) and references them via the ?3
variable for the next pattern.
In the next pattern those vertex IDs (?3
) are bound with the Predicate (property key of created-on) to evaluate the condition of the date range. Because this is a conditional evaluation, each vertex in the set of ?3
has to be evaluated (each 'created-on' property on each of those vertices has to be read).