Search code examples
pythontensorflowkerasobject-detectionimageai

object detection with imageai -module 'keras.backend' has no attribute 'get_session'-


I have the following code

from imageai.Detection import ObjectDetection
detector = ObjectDetection()

then I got this error

AttributeError                            Traceback (most recent call last)
<ipython-input-30-0381e3fc0028> in <module>
----> 1 detector = ObjectDetection()
      2 
      3 # model_path = "./models/yolo-tiny.h5"
      4 # execution_path = os.getcwd()
      5 

~\anaconda3\lib\site-packages\imageai\Detection\__init__.py in __init__(self)
     86         self.__yolo_model_image_size = (416, 416)
     87         self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes = "", "", ""
---> 88         self.sess = K.get_session()
     89 
     90         # Unique instance variables for TinyYOLOv3.

AttributeError: module 'keras.backend' has no attribute 'get_session'

I imported tensorflow and keras after this was ran and these are the versions respectively

print(tensorflow.__version__)
print(keras.__version__)

2.3.1
2.4.3

I tried installing tensorflow=1.13.1 because I read it should help somewhere but that was from 2018 and it didn't work.

What can I do to fix this bug?

Or is there any other way to use pre-trained object detection models?


Solution

  • You are using https://github.com/OlafenwaMoses/ImageAI.
    Despite it is not deprecated, the last commit from this repository is from January 2019.
    Also, they integrate in their framework outdated networks
    ( keras-retinanet is deprecated, for instance )

    Given that, I will answer your last question:
    'is there any other way to use pre-trained object detection models?':

    Yes, there are.
    Both tensorflow and pytorch,
    that are currently the main libraries for deep learning, offer them.

    For instance, pytorch has few detection models coded in torchvision.models.detection : https://github.com/pytorch/vision/tree/master/torchvision/models/detection

    Note 1: to install pytorch, you have to run in your conda environment:
    conda install torchvision -c pytorch

    Note 2: the following code has been made functional, combining the docstrings in : https://github.com/pytorch/vision/blob/master/torchvision/models/detection/retinanet.py
    and this tutorial:
    https://debuggercafe.com/faster-rcnn-object-detection-with-pytorch/
    I suggest you to have a look at them, too.

    import cv2
    import requests
    import torchvision
    import numpy as np
    
    from torchvision import transforms
    from PIL import Image
    from io import BytesIO
    
    coco_names = [
        '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
        'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
        'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
        'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
        'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
        'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
        'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
        'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
        'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
        'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
    ]
    COLORS = np.random.uniform(0, 255, size=(len(coco_names), 3))
    
    # read an image from the internet
    url = "https://raw.githubusercontent.com/fizyr/keras-retinanet/master/examples/000000008021.jpg"
    response = requests.get(url)
    image = Image.open(BytesIO(response.content)).convert("RGB")
    
    # create a retinanet inference model
    model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True, score_thresh=0.3)
    model.eval()
    
    # predict detections in the input image
    image_as_tensor = transforms.Compose([transforms.ToTensor(), ])(image)
    outputs = model(image_as_tensor.unsqueeze(0))
    
    # post-process the detections ( filter them out by score )
    detection_threshold = 0.5
    pred_classes = [coco_names[i] for i in outputs[0]['labels'].cpu().numpy()]
    pred_scores = outputs[0]['scores'].detach().cpu().numpy()
    pred_bboxes = outputs[0]['boxes'].detach().cpu().numpy()
    boxes = pred_bboxes[pred_scores >= detection_threshold].astype(np.int32)
    classes = pred_classes
    labels = outputs[0]['labels']
    
    # draw predictions
    image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
    for i, box in enumerate(boxes):
        color = COLORS[labels[i]]
        cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2)
        cv2.putText(image, classes[i], (int(box[0]), int(box[1] - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
                    lineType=cv2.LINE_AA)
    cv2.imshow('Image', image)
    cv2.waitKey(0)
    
    

    Output: retinanet example