I need to write a function to filter a dataset based on some hierarchical conditions. The purpose of this function is to get one annotation for each protein among a bunch of them.
The function needs to do the following,
Here is an example of data that will be filtered,
df=pd.DataFrame({
'id': ['Protein_1', 'Protein_1', 'Protein_1',
'Protein_2','Protein_2','Protein_2'],
'analysis': ['analysis_6', 'analysis_4', 'analysis_1',
'analysis_3','analysis_2','analysis_5'],
'annotation':['annotation_1', 'annotation_2', 'annotation_3',
'annotation_1','annotation_2','annotation_3'] })
and this is the output I'd like to see,
df_filtered= pd.DataFrame({
'id': ['Protein_1','Protein_2'],
'analysis': ['analysis_1', 'analysis_2'],
'annotation':['annotation_3', 'annotation_2'] })
The code in the following is working but I'd like to do it by using pandas groupby, apply, and iterrows functions.
new_df =pd.DataFrame(columns=df.columns)
protein_id=list(df.id.unique())
for protein in protein_id:
data=df[df["id"] == protein]
if len(data[data["analysis"] =="analysis_1"]) == 0:
if len(data[data["analysis"] =="analysis_2"]) == 0:
if len(data[data["analysis"] =="analysis_3"]) == 0:
pass
else:
data2=data[data["analysis"] =="analysis_3"]
new_df = pd.concat([new_df,data2])
else:
data2=data[data["analysis"] =="analysis_2"]
new_df = pd.concat([new_df,data2])
else:
data2=data[data["analysis"] =="analysis_1"]
new_df = pd.concat([new_df,data2])
new_df
Appreciate any help!!
You could temporarily sort the dataframe, then drop all but one entries for each id. It looks like this:
df.sort_values('analysis').drop_duplicates(['id'], keep='first')
Note, that this doesn't change the order in your original dataframe. The result looks like this:
id analysis annotation
2 Protein_1 analysis_1 annotation_3
4 Protein_2 analysis_2 annotation_2
In case you have a function that returns the priority of an analysis, you can use it in combination with the method above:
def prio_function(analysis):
# return a low number for a better result
# and a high number for a worse result
return int(analysis.split('_')[1]) # replace this row by your code
df_work= df.assign(_prio=df['analysis'].apply(prio_function))
df_work.sort_values('_prio').drop_duplicates(['id'], keep='first').drop(columns='_prio')
If priorization is simpler, you can also pass a dicitionary to apply
instead of a function.